BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21232173)

  • 1. Parasite-induced changes in the diet of a freshwater amphipod: field and laboratory evidence.
    Médoc V; Piscart C; Maazouzi C; Simon L; Beisel JN
    Parasitology; 2011 Apr; 138(4):537-46. PubMed ID: 21232173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea, Amphipoda) to non-host invertebrate predators.
    Kaldonski N; Perrot-Minnot MJ; Motreuil S; Cézilly F
    Parasitology; 2008 Apr; 135(5):627-32. PubMed ID: 18371238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulative parasites may not alter intermediate host distribution but still enhance their transmission: field evidence for increased vulnerability to definitive hosts and non-host predator avoidance.
    Lagrue C; Güvenatam A; Bollache L
    Parasitology; 2013 Feb; 140(2):258-65. PubMed ID: 23068018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotenoids of two freshwater amphipod species (Gammarus pulex and G. roeseli) and their common acanthocephalan parasite Polymorphus minutus.
    Gaillard M; Juillet C; Cézilly F; Perrot-Minnot MJ
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Sep; 139(1):129-36. PubMed ID: 15364296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host manipulation of a freshwater crustacean (Gammarus roeseli) by an acanthocephalan parasite (Polymorphus minutus) in a biological invasion context.
    Médoc V; Bollache L; Beisel JN
    Int J Parasitol; 2006 Nov; 36(13):1351-8. PubMed ID: 16934814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollution-induced heat shock protein expression in the amphipod Gammarus roeseli is affected by larvae of Polymorphus minutus (Acanthocephala).
    Sures B; Radszuweit H
    J Helminthol; 2007 Jun; 81(2):191-7. PubMed ID: 17578599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field evidence for non-host predator avoidance in a manipulated amphipod.
    Médoc V; Beisel JN
    Naturwissenschaften; 2009 Apr; 96(4):513-23. PubMed ID: 19139837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod.
    Perrot-Minnot MJ; Kaldonski N; Cézilly F
    Int J Parasitol; 2007 May; 37(6):645-51. PubMed ID: 17258219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An acanthocephalan parasite boosts the escape performance of its intermediate host facing non-host predators.
    Medoc V; Beisel JN
    Parasitology; 2008 Jul; 135(8):977-84. PubMed ID: 18477417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of Echinorhynchus borealis (Acanthocephala) infection on the anti-predator behavior of a benthic amphipod.
    Benesh DP; Kitchen J; Pulkkinen K; Hakala I; Valtonen ET
    J Parasitol; 2008 Apr; 94(2):542-5. PubMed ID: 18564759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does the carotenoid-based colouration of Polymorphus minutus facilitate its trophic transmission to definitive hosts?
    Jacquin L; Mori Q; Médoc V
    Parasitology; 2013 Sep; 140(10):1310-5. PubMed ID: 23866854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The behavioral response of amphipods harboring Corynosoma constrictum (Acanthocephala) to various components of light.
    Benesh DP; Duclos LM; Nickol BB
    J Parasitol; 2005 Aug; 91(4):731-6. PubMed ID: 17089736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of hosts' behavior by a parasite: field evidence for adaptive manipulation.
    Lagrue C; Kaldonski N; Perrot-Minnot MJ; Motreuil S; Bollache L
    Ecology; 2007 Nov; 88(11):2839-47. PubMed ID: 18051653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of acanthocephalan parasites on aggregation behavior of amphipods (Gammarus pseudolimnaeus).
    Lewis SE; Hodel A; Sturdy T; Todd R; Weigl C
    Behav Processes; 2012 Oct; 91(2):159-63. PubMed ID: 22906412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation between populations and local adaptation in acanthocephalan-induced parasite manipulation.
    Franceschi N; Cornet S; Bollache L; Dechaume-Moncharmont FX; Bauer A; Motreuil S; Rigaud T
    Evolution; 2010 Aug; 64(8):2417-30. PubMed ID: 20394670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parasite-induced alteration of plastic response to predation threat: increased refuge use but lower food intake in Gammarus pulex infected with the acanothocephalan Pomphorhynchus laevis.
    Dianne L; Perrot-Minnot MJ; Bauer A; Guvenatam A; Rigaud T
    Int J Parasitol; 2014 Mar; 44(3-4):211-6. PubMed ID: 24291320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the host or the parasite the most locally adapted in an amphipod-acanthocephalan relationship? A case study in a biological invasion context.
    Moret Y; Bollache L; Wattier R; Rigaud T
    Int J Parasitol; 2007 May; 37(6):637-44. PubMed ID: 17266962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are cryptic host species also cryptic to parasites? Host specificity and geographical distribution of acanthocephalan parasites infecting freshwater Gammarus.
    Westram AM; Baumgartner C; Keller I; Jokela J
    Infect Genet Evol; 2011 Jul; 11(5):1083-90. PubMed ID: 21470578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts.
    Jacquin L; Mori Q; Pause M; Steffen M; Medoc V
    PLoS One; 2014; 9(7):e101684. PubMed ID: 25000519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological invasion and parasitism: invaders do not suffer from physiological alterations of the acanthocephalan Pomphorhynchus laevis.
    Cornet S; Sorci G; Moret Y
    Parasitology; 2010 Jan; 137(1):137-47. PubMed ID: 19765338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.