BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21232543)

  • 1. A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth.
    d'Onofrio A; Fasano A; Monechi B
    Math Biosci; 2011 Mar; 230(1):45-54. PubMed ID: 21232543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic Gompertz model of tumour cell growth.
    Lo CF
    J Theor Biol; 2007 Sep; 248(2):317-21. PubMed ID: 17555768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer simulation of in vivo tumour growth and response to radiotherapy: new algorithms and parametric results.
    Dionysiou DD; Stamatakos GS; Uzunoglu NK; Nikita KS
    Comput Biol Med; 2006 May; 36(5):448-64. PubMed ID: 15916755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generalized "tumor growth delay" assay for quantifying alterations of tumor regrowth patterns.
    Bassukas ID
    Anticancer Res; 1993; 13(5A):1601-6. PubMed ID: 8239540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of various growth mechanisms of solid tumour growth within the linear-quadratic model for radiotherapy.
    McAneney H; O'Rourke SF
    Phys Med Biol; 2007 Feb; 52(4):1039-54. PubMed ID: 17264369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cyclooxygenase inhibitors in a xenograft model of canine mammary tumours.
    Sonzogni-Desautels K; Knapp DW; Sartin E; Doré M
    Vet Comp Oncol; 2011 Sep; 9(3):161-71. PubMed ID: 21848619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating growth dynamics and radiation response of avascular tumour spheroids-model validation in the case of an EMT6/Ro multicellular spheroid.
    Zacharaki EI; Stamatakos GS; Nikita KS; Uzunoglu NK
    Comput Methods Programs Biomed; 2004 Dec; 76(3):193-206. PubMed ID: 15501506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring the effect of therapy on tumors showing stochastic Gompertzian growth.
    Albano G; Giorno V; Román-Román P; Torres-Ruiz F
    J Theor Biol; 2011 May; 276(1):67-77. PubMed ID: 21295592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear model predictive control for dosing daily anticancer agents using a novel saturating-rate cell-cycle model.
    Florian JA; Eiseman JL; Parker RS
    Comput Biol Med; 2008 Mar; 38(3):339-47. PubMed ID: 18222419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the effect of a therapy able to modify both the growth rates in a Gompertz stochastic model.
    Albano G; Giorno V; Román-Román P; Torres-Ruiz F
    Math Biosci; 2013 Sep; 245(1):12-21. PubMed ID: 23347900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Applicability of the Gompertz function for the mathematical description of tumor growth of transplanted mammary carcinoma of the C3H mouse using a computer program].
    Kob D; Magdon E; Günther R; Kriester A; Winterfeld G
    Radiobiol Radiother (Berl); 1983; 24(5):649-56. PubMed ID: 6689081
    [No Abstract]   [Full Text] [Related]  

  • 12. Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice.
    Vasiljeva O; Korovin M; Gajda M; Brodoefel H; Bojic L; Krüger A; Schurigt U; Sevenich L; Turk B; Peters C; Reinheckel T
    Oncogene; 2008 Jul; 27(30):4191-9. PubMed ID: 18345026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Description of the growth of experimental animal tumors using the Gompertz function].
    Kob D; Kriester A; Günther R
    Radiobiol Radiother (Berl); 1982; 23(5):591-602. PubMed ID: 7156384
    [No Abstract]   [Full Text] [Related]  

  • 14. A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth.
    Piotrowska MJ; Angus SD
    J Theor Biol; 2009 May; 258(2):165-78. PubMed ID: 19248794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth laws in cancer: implications for radiotherapy.
    Castorina P; Deisboeck TS; Gabriele P; Guiot C
    Radiat Res; 2007 Sep; 168(3):349-56. PubMed ID: 17705631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Gompertzian growth and cell population dynamics.
    Kozusko F; Bajzer Z
    Math Biosci; 2003 Oct; 185(2):153-67. PubMed ID: 12941534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cell-cell interactions in a two-phase model for avascular tumour growth.
    Breward CJ; Byrne HM; Lewis CE
    J Math Biol; 2002 Aug; 45(2):125-52. PubMed ID: 12181602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model for metastatic growth illustrated by in vivo and in vitro growth of a transplantable mammary carcinoma in mice.
    Fuchshuber P; Günther M; Feaux De Lacroix W; Fischer R
    Anticancer Res; 1986; 6(4):819-27. PubMed ID: 2428282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stochastic model in tumor growth.
    Albano G; Giorno V
    J Theor Biol; 2006 Sep; 242(2):329-36. PubMed ID: 16620871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single-cell-based model of tumor growth in vitro: monolayers and spheroids.
    Drasdo D; Höhme S
    Phys Biol; 2005 Jul; 2(3):133-47. PubMed ID: 16224119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.