BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21232617)

  • 1. Spatiotemporal signatures of an abnormal auditory system in stuttering.
    Kikuchi Y; Ogata K; Umesaki T; Yoshiura T; Kenjo M; Hirano Y; Okamoto T; Komune S; Tobimatsu S
    Neuroimage; 2011 Apr; 55(3):891-9. PubMed ID: 21232617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal auditory synchronization in stuttering: A magnetoencephalographic study.
    Kikuchi Y; Okamoto T; Ogata K; Hagiwara K; Umezaki T; Kenjo M; Nakagawa T; Tobimatsu S
    Hear Res; 2017 Feb; 344():82-89. PubMed ID: 27825021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verbal dichotic listening in developmental stuttering: subgroups with atypical auditory processing.
    Foundas AL; Corey DM; Hurley MM; Heilman KM
    Cogn Behav Neurol; 2004 Dec; 17(4):224-32. PubMed ID: 15622019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voxel-based morphometry of auditory and speech-related cortex in stutterers.
    Beal DS; Gracco VL; Lafaille SJ; De Nil LF
    Neuroreport; 2007 Aug; 18(12):1257-60. PubMed ID: 17632278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.
    Hertrich I; Mathiak K; Lutzenberger W; Ackermann H
    Neuropsychologia; 2004; 42(13):1814-26. PubMed ID: 15351630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemispheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change.
    Okamoto H; Stracke H; Draganova R; Pantev C
    Cereb Cortex; 2009 Oct; 19(10):2290-7. PubMed ID: 19136454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Healthy-side dominance of middle- and long-latency neuromagnetic fields in idiopathic sudden sensorineural hearing loss.
    Li LP; Shiao AS; Chen LF; Niddam DM; Chang SY; Lien CF; Lee SK; Hsieh JC
    Eur J Neurosci; 2006 Aug; 24(3):937-46. PubMed ID: 16930421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory sensory gating deficit and cortical thickness in schizophrenia.
    Thoma RJ; Hanlon FM; Sanchez N; Weisend MP; Huang M; Jones A; Miller GA; Canive JM
    Neurol Clin Neurophysiol; 2004 Nov; 2004():62. PubMed ID: 16012689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evoked and induced oscillatory activity contributes to abnormal auditory sensory gating in schizophrenia.
    Popov T; Jordanov T; Weisz N; Elbert T; Rockstroh B; Miller GA
    Neuroimage; 2011 May; 56(1):307-14. PubMed ID: 21316464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory evoked fields to vocalization during passive listening and active generation in adults who stutter.
    Beal DS; Cheyne DO; Gracco VL; Quraan MA; Taylor MJ; De Nil LF
    Neuroimage; 2010 Oct; 52(4):1645-53. PubMed ID: 20452437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered effective connectivity and anomalous anatomy in the basal ganglia-thalamocortical circuit of stuttering speakers.
    Lu C; Peng D; Chen C; Ning N; Ding G; Li K; Yang Y; Lin C
    Cortex; 2010 Jan; 46(1):49-67. PubMed ID: 19375076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateralized abnormalities in auditory M50 sensory gating and cortical thickness of the superior temporal gyrus in post-traumatic stress disorder: preliminary results.
    Hunter M; Villarreal G; McHaffie GR; Jimenez B; Smith AK; Calais LA; Hanlon F; Thoma RJ; CaƱive JM
    Psychiatry Res; 2011 Feb; 191(2):138-44. PubMed ID: 21211947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of stimulus frequency and stimulation site on the N1m response of the human auditory cortex.
    Gabriel D; Veuillet E; Ragot R; Schwartz D; Ducorps A; Norena A; Durrant JD; Bonmartin A; Cotton F; Collet L
    Hear Res; 2004 Nov; 197(1-2):55-64. PubMed ID: 15504604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of early audiovisual interactions during speech and nonspeech central auditory processing: a magnetoencephalography study.
    Hertrich I; Mathiak K; Lutzenberger W; Ackermann H
    J Cogn Neurosci; 2009 Feb; 21(2):259-74. PubMed ID: 18510440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-modal interactions during perception of audiovisual speech and nonspeech signals: an fMRI study.
    Hertrich I; Dietrich S; Ackermann H
    J Cogn Neurosci; 2011 Jan; 23(1):221-37. PubMed ID: 20044895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory feedback dependence hypothesis in persons who stutter.
    Namasivayam AK; van Lieshout P; McIlroy WE; De Nil L
    Hum Mov Sci; 2009 Dec; 28(6):688-707. PubMed ID: 19692132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-attentive spectro-temporal feature processing in the human auditory system.
    Zaehle T; Jancke L; Herrmann CS; Meyer M
    Brain Topogr; 2009 Sep; 22(2):97-108. PubMed ID: 19266276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of simulated stuttering and prolonged speech on the neural activation patterns of stuttering and nonstuttering adults.
    De Nil LF; Beal DS; Lafaille SJ; Kroll RM; Crawley AP; Gracco VL
    Brain Lang; 2008 Nov; 107(2):114-23. PubMed ID: 18822455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemispheric specialization for processing auditory nonspeech stimuli.
    Jamison HL; Watkins KE; Bishop DV; Matthews PM
    Cereb Cortex; 2006 Sep; 16(9):1266-75. PubMed ID: 16280465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Right hemispheric laterality of human 40 Hz auditory steady-state responses.
    Ross B; Herdman AT; Pantev C
    Cereb Cortex; 2005 Dec; 15(12):2029-39. PubMed ID: 15772375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.