These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 21232735)
1. Relevance of the ability of fructose 1,6-bis(phosphate) to sequester ferrous but not ferric ions. Bajić A; Zakrzewska J; Godjevac D; Andjus P; Jones DR; Spasić M; Spasojević I Carbohydr Res; 2011 Feb; 346(3):416-20. PubMed ID: 21232735 [TBL] [Abstract][Full Text] [Related]
2. Antioxidant properties of carnosine re-evaluated with oxidizing systems involving iron and copper ions. Mozdzan M; Szemraj J; Rysz J; Nowak D Basic Clin Pharmacol Toxicol; 2005 May; 96(5):352-60. PubMed ID: 15853927 [TBL] [Abstract][Full Text] [Related]
3. Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical. Spasojević I; Mojović M; Blagojević D; Spasić SD; Jones DR; Nikolić-Kokić A; Spasić MB Carbohydr Res; 2009 Jan; 344(1):80-4. PubMed ID: 18947823 [TBL] [Abstract][Full Text] [Related]
4. Electron paramagnetic resonance measurements of the ferrous mononuclear site of phthalate dioxygenase substituted with alternate divalent metal ions: direct evidence for ligation of two histidines in the copper(II)-reconstituted protein. Coulter ED; Moon N; Batie CJ; Dunham WR; Ballou DP Biochemistry; 1999 Aug; 38(34):11062-72. PubMed ID: 10460161 [TBL] [Abstract][Full Text] [Related]
5. Doxorubicin reduces the iron(III) complexes of the hydrolysis products of the antioxidant cardioprotective agent dexrazoxane (ICRF-187) and produces hydroxyl radicals. Malisza KL; Hasinoff BB Arch Biochem Biophys; 1995 Feb; 316(2):680-8. PubMed ID: 7864623 [TBL] [Abstract][Full Text] [Related]
6. Non-heme iron(II/III) complexes that model the reactivity of lipoxygenase with a redox switch. Mei F; Ou C; Wu G; Cao L; Han F; Meng X; Li J; Li D; Liao Z Dalton Trans; 2010 May; 39(18):4267-9. PubMed ID: 20422083 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and equilibrium constants of phytic acid and ferric and ferrous phytate derived from nuclear magnetic resonance spectroscopy. Heighton L; Schmidt WF; Siefert RL J Agric Food Chem; 2008 Oct; 56(20):9543-7. PubMed ID: 18798632 [TBL] [Abstract][Full Text] [Related]
8. Release of NO from reduced nitroprusside ion. Iron-dinitrosyl formation and NO-disproportionation reactions. Roncaroli F; van Eldik R; Olabe JA Inorg Chem; 2005 Apr; 44(8):2781-90. PubMed ID: 15819566 [TBL] [Abstract][Full Text] [Related]
9. Complexation of nicotinamide adenine dinucleotide with ferric and ferrous ions. Lvovich V; Scheeline A Arch Biochem Biophys; 1995 Jun; 320(1):1-13. PubMed ID: 7793967 [TBL] [Abstract][Full Text] [Related]
10. An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus (Bath) reduced by one electron at 77 K: the effects of component interactions and the binding of small molecules to the diiron(III) center. Davydov R; Valentine AM; Komar-Panicucci S; Hoffman BM; Lippard SJ Biochemistry; 1999 Mar; 38(13):4188-97. PubMed ID: 10194335 [TBL] [Abstract][Full Text] [Related]
11. Bioavailability of trivalent iron in oral iron preparations. Therapeutic efficacy and iron absorption from simple ferric compounds and high- or low-molecular weight ferric hydroxide-carbohydrate complexes. Heinrich HC Arzneimittelforschung; 1975 Mar; 25(3):420-6. PubMed ID: 1174047 [TBL] [Abstract][Full Text] [Related]
12. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. Roelfes G; Vrajmasu V; Chen K; Ho RY; Rohde JU; Zondervan C; La Crois RM; Schudde EP; Lutz M; Spek AL; Hage R; Feringa BL; Münck E; Que L Inorg Chem; 2003 Apr; 42(8):2639-53. PubMed ID: 12691572 [TBL] [Abstract][Full Text] [Related]
13. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions. Barker PD; Freund SM Biochemistry; 1996 Oct; 35(42):13627-35. PubMed ID: 8885842 [TBL] [Abstract][Full Text] [Related]
14. Effects of ferrous sulphate and non-ionic iron-polymaltose complex on markers of oxidative tissue damage in patients with inflammatory bowel disease. Erichsen K; Ulvik RJ; Grimstad T; Berstad A; Berge RK; Hausken T Aliment Pharmacol Ther; 2005 Nov; 22(9):831-8. PubMed ID: 16225492 [TBL] [Abstract][Full Text] [Related]
15. [Microbial reduction ability of various iron oxides in pure culture experiment]. Qu D; Schnell S Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):745-9. PubMed ID: 12552834 [TBL] [Abstract][Full Text] [Related]
16. Redox reactions of the non-heme iron in photosystem II: an EPR spectroscopic study. McEvoy JP; Brudvig GW Biochemistry; 2008 Dec; 47(50):13394-403. PubMed ID: 19053286 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. Iida H; Takayanagi K; Nakanishi T; Osaka T J Colloid Interface Sci; 2007 Oct; 314(1):274-80. PubMed ID: 17568605 [TBL] [Abstract][Full Text] [Related]
18. Iron in evolution. Williams RJ FEBS Lett; 2012 Mar; 586(5):479-84. PubMed ID: 21704034 [TBL] [Abstract][Full Text] [Related]
19. Redox thermodynamics of the Fe(III)/Fe(II) couple of human myeloperoxidase in its high-spin and low-spin forms. Battistuzzi G; Bellei M; Zederbauer M; Furtmüller PG; Sola M; Obinger C Biochemistry; 2006 Oct; 45(42):12750-5. PubMed ID: 17042493 [TBL] [Abstract][Full Text] [Related]
20. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III). Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]