BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 21232748)

  • 1. Kinetic behaviour in supercritical fluid chromatography with modified mobile phase for 5 μm particle size and varied flow rates.
    Lesellier E; Fougere L; Poe DP
    J Chromatogr A; 2011 Apr; 1218(15):2058-64. PubMed ID: 21232748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds.
    Grand-Guillaume Perrenoud A; Veuthey JL; Guillarme D
    J Chromatogr A; 2012 Nov; 1266():158-67. PubMed ID: 23092872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases.
    Lesellier E
    J Chromatogr A; 2012 Mar; 1228():89-98. PubMed ID: 22192562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of selected parameters on the response of the evaporative light scattering detector in supercritical fluid chromatography.
    E Lesellier ; Valarché A; West C; Dreux M
    J Chromatogr A; 2012 Aug; 1250():220-6. PubMed ID: 22609165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic behaviour in supercritical fluid chromatography with modified mobile phase for 5 μm particle size. Part II: Effect of outlet pressure changes.
    Lesellier E; Fougere L
    J Chromatogr A; 2014 Dec; 1373():190-6. PubMed ID: 25464994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a 2.6 μm Kinetex porous shell hydrophilic interaction liquid chromatography column in supercritical fluid chromatography with a comparison to 3 μm totally porous silica.
    Berger TA
    J Chromatogr A; 2011 Jul; 1218(28):4559-68. PubMed ID: 21628062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling of retention in analytical supercritical fluid chromatography for CO2-Methanol mobile phase.
    Leśko M; Poe DP; Kaczmarski K
    J Chromatogr A; 2013 Aug; 1305():285-92. PubMed ID: 23891374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I--elution of an unretained tracer.
    Kaczmarski K; Poe DP; Guiochon G
    J Chromatogr A; 2010 Oct; 1217(42):6578-87. PubMed ID: 20813372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of density on kinetic performance in supercritical fluid chromatography with methanol modified carbon dioxide.
    Berger TA
    J Chromatogr A; 2018 Aug; 1564():188-198. PubMed ID: 29929869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and evaluation of various methods for the construction of kinetic performance limit plots for supercritical fluid chromatography.
    Delahaye S; Broeckhoven K; Desmet G; Lynen F
    J Chromatogr A; 2012 Oct; 1258():152-60. PubMed ID: 22939203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention mechanisms in super/subcritical fluid chromatography on packed columns.
    Lesellier E
    J Chromatogr A; 2009 Mar; 1216(10):1881-90. PubMed ID: 18996534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated moving columns technique for enantioselective supercritical fluid chromatography.
    Zhang Y; Dai J; Wang-Iverson DB; Tymiak AA
    Chirality; 2007 Sep; 19(9):683-92. PubMed ID: 17487890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of system variables involved in packed column supercritical fluid chromatography of stavudine taken as model analyte using response surface methodology along with study of thermodynamic parameters.
    Kaul N; Agrawal H; Paradkar AR; Mahadik KR
    J Pharm Biomed Anal; 2007 Jan; 43(2):471-80. PubMed ID: 16935453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral separation of selected proline derivatives using a polysaccharide-type stationary phase by supercritical fluid chromatography and comparison with high-performance liquid chromatography.
    Zhao Y; Pritts WA; Zhang S
    J Chromatogr A; 2008 May; 1189(1-2):245-53. PubMed ID: 18054949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modern analytical supercritical fluid chromatography using columns packed with sub-2 μm particles: a tutorial.
    Nováková L; Perrenoud AG; Francois I; West C; Lesellier E; Guillarme D
    Anal Chim Acta; 2014 May; 824():18-35. PubMed ID: 24759745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate measurements of experimental parameters in supercritical fluid chromatography. I. Extent of variations of the mass and volumetric flow rates.
    Tarafder A; Guiochon G
    J Chromatogr A; 2013 Apr; 1285():148-58. PubMed ID: 23477796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of LC/MS and SFC/MS for screening of a large and diverse library of pharmaceutically relevant compounds.
    Pinkston JD; Wen D; Morand KL; Tirey DA; Stanton DT
    Anal Chem; 2006 Nov; 78(21):7467-72. PubMed ID: 17073414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics.
    Lesellier E; Mith D; Dubrulle I
    J Chromatogr A; 2015 Dec; 1423():158-68. PubMed ID: 26553956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of ultra high performance supercritical neat carbon dioxide chromatography at conventional pressures.
    Sarazin C; Thiébaut D; Sassiat P; Vial J
    J Sep Sci; 2011 Oct; 34(19):2773-8. PubMed ID: 21898804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.