These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 21232852)

  • 1. Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid-liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry.
    Mirzaei M; Behzadi M; Abadi NM; Beizaei A
    J Hazard Mater; 2011 Feb; 186(2-3):1739-43. PubMed ID: 21232852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solidified floating organic drop microextraction (SFODME) for simultaneous separation/preconcentration and determination of cobalt and nickel by graphite furnace atomic absorption spectrometry (GFAAS).
    Bidabadi MS; Dadfarnia S; Shabani AM
    J Hazard Mater; 2009 Jul; 166(1):291-6. PubMed ID: 19117672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.
    Asadollahi T; Dadfarnia S; Shabani AM
    Talanta; 2010 Jun; 82(1):208-12. PubMed ID: 20685458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speciation and determination of ultra trace amounts of chromium by solidified floating organic drop microextraction (SFODME) and graphite furnace atomic absorption spectrometry.
    Moghadam MR; Dadfarnia S; Shabani AM
    J Hazard Mater; 2011 Feb; 186(1):169-74. PubMed ID: 21112142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.
    Shamsipur M; Fattahi N; Assadi Y; Sadeghi M; Sharafi K
    Talanta; 2014 Dec; 130():26-32. PubMed ID: 25159375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersive liquid-liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry.
    Liang P; Zhao E; Li F
    Talanta; 2009 Mar; 77(5):1854-7. PubMed ID: 19159809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of trace amount of silver using dispersive liquid-liquid based on solidification of floating organic drop microextraction.
    Afzali D; Mohadesi AR; Jahromi BB; Falahnejad M
    Anal Chim Acta; 2011 Jan; 684(1-2):45-9. PubMed ID: 21167984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of dispersive liquid-liquid microextraction based on solidification of floating organic drop for the determination of trace nickel.
    Wang Y; Zhang J; Zhao B; Du X; Ma J; Li J
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1381-93. PubMed ID: 21598026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by inductively coupled plasma-optical emission spectrometry as a fast technique for the simultaneous determination of heavy metals.
    Yamini Y; Rezaee M; Khanchi A; Faraji M; Saleh A
    J Chromatogr A; 2010 Apr; 1217(16):2358-64. PubMed ID: 19945116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of trace lead in biological and water samples with dispersive liquid-liquid microextraction preconcentration.
    Liang P; Sang H
    Anal Biochem; 2008 Sep; 380(1):21-5. PubMed ID: 18539126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples.
    Jiang H; Qin Y; Hu B
    Talanta; 2008 Feb; 74(5):1160-5. PubMed ID: 18371765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel separation/preconcentration system based on solidification of floating organic drop microextraction for determination of lead by graphite furnace atomic absorption spectrometry.
    Dadfarnia S; Salmanzadeh AM; Shabani AM
    Anal Chim Acta; 2008 Aug; 623(2):163-7. PubMed ID: 18620920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-precipitation of Ni, Cr, Mn, Pb and Zn in industrial wastewater and sediment samples with copper(II) cyclo-hexylmethyldithiocarbamate for their flame atomic absorption spectrometric determination.
    Ipeaiyeda AR; Odola AJ
    Water Sci Technol; 2012; 66(1):105-12. PubMed ID: 22678206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of dispersive liquid-liquid microextraction coupled with inductively coupled plasma-optical emission spectrometry with the aid of experimental design for simultaneous determination of heavy metals in natural waters.
    Sereshti H; Khojeh V; Samadi S
    Talanta; 2011 Jan; 83(3):885-90. PubMed ID: 21147333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters.
    Li Y; Peng G; He Q; Zhu H; Al-Hamadani SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():156-61. PubMed ID: 25590827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations.
    Divrikli U; Kartal AA; Soylak M; Elci L
    J Hazard Mater; 2007 Jul; 145(3):459-64. PubMed ID: 17175100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-trace determination of lead in water and food samples by using ionic liquid-based single drop microextraction-electrothermal atomic absorption spectrometry.
    Manzoori JL; Amjadi M; Abulhassani J
    Anal Chim Acta; 2009 Jun; 644(1-2):48-52. PubMed ID: 19463561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the determination of heavy metals in water samples with ultrasound-assisted dispersive liquid-liquid microextraction prior to FAAS.
    Li Z; Yu G; Song J; Wang Q; Liu M; Yang Y
    Water Sci Technol; 2013; 67(2):247-53. PubMed ID: 23168620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrophotometric determination of iron species using a combination of artificial neural networks and dispersive liquid-liquid microextraction based on solidification of floating organic drop.
    Moghadam MR; Shabani AM; Dadfarnia S
    J Hazard Mater; 2011 Dec; 197():176-82. PubMed ID: 21999983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.