BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 21232892)

  • 1. A conditional Granger causality model approach for group analysis in functional magnetic resonance imaging.
    Zhou Z; Wang X; Klahr NJ; Liu W; Arias D; Liu H; von Deneen KM; Wen Y; Lu Z; Xu D; Liu Y
    Magn Reson Imaging; 2011 Apr; 29(3):418-33. PubMed ID: 21232892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing brain networks with PCA and conditional Granger causality.
    Zhou Z; Chen Y; Ding M; Wright P; Lu Z; Liu Y
    Hum Brain Mapp; 2009 Jul; 30(7):2197-206. PubMed ID: 18830956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data.
    Havlicek M; Jan J; Brazdil M; Calhoun VD
    Neuroimage; 2010 Oct; 53(1):65-77. PubMed ID: 20561919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging.
    Di X; Biswal BB
    Neuroimage; 2014 Feb; 86():53-9. PubMed ID: 23927904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of multivariate classifiers and response normalizations for pattern-information fMRI.
    Misaki M; Kim Y; Bandettini PA; Kriegeskorte N
    Neuroimage; 2010 Oct; 53(1):103-18. PubMed ID: 20580933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Validation of Dynamic Granger Causality for Inferring Stimulus-Evoked Sub-100 ms Timing Differences from fMRI.
    Wang Y; Katwal S; Rogers B; Gore J; Deshpande G
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):539-546. PubMed ID: 27448367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting directional influence in fMRI connectivity analysis using PCA based Granger causality.
    Zhou Z; Ding M; Chen Y; Wright P; Lu Z; Liu Y
    Brain Res; 2009 Sep; 1289():22-9. PubMed ID: 19595679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of MCI using optimal sparse MAR modeled effective connectivity networks.
    Wee CY; Li Y; Jie B; Peng ZW; Shen D
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):319-327. PubMed ID: 24579156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nonlinear identification method to study effective connectivity in functional MRI.
    Li X; Marrelec G; Hess RF; Benali H
    Med Image Anal; 2010 Feb; 14(1):30-8. PubMed ID: 19850507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph-partitioned spatial priors for functional magnetic resonance images.
    Harrison LM; Penny W; Flandin G; Ruff CC; Weiskopf N; Friston KJ
    Neuroimage; 2008 Dec; 43(4):694-707. PubMed ID: 18790064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing and compensating for zero-lag correlation effects in time-lagged Granger causality analysis of FMRI.
    Deshpande G; Sathian K; Hu X
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1446-56. PubMed ID: 20659822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data.
    Deshpande G; Hu X; Stilla R; Sathian K
    Neuroimage; 2008 May; 40(4):1807-14. PubMed ID: 18329290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping directed influence over the brain using Granger causality and fMRI.
    Roebroeck A; Formisano E; Goebel R
    Neuroimage; 2005 Mar; 25(1):230-42. PubMed ID: 15734358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distributed analysis of simultaneous EEG-fMRI time-series: modeling and interpretation issues.
    Esposito F; Aragri A; Piccoli T; Tedeschi G; Goebel R; Di Salle F
    Magn Reson Imaging; 2009 Oct; 27(8):1120-30. PubMed ID: 19261423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest.
    van de Ven VG; Formisano E; Prvulovic D; Roeder CH; Linden DE
    Hum Brain Mapp; 2004 Jul; 22(3):165-78. PubMed ID: 15195284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kernel Granger causality mapping effective connectivity on FMRI data.
    Liao W; Marinazzo D; Pan Z; Gong Q; Chen H
    IEEE Trans Med Imaging; 2009 Nov; 28(11):1825-35. PubMed ID: 19709972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.