These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 21233211)
1. Relationship between prion propensity and the rates of individual molecular steps of fibril assembly. Wang YQ; Buell AK; Wang XY; Welland ME; Dobson CM; Knowles TP; Perrett S J Biol Chem; 2011 Apr; 286(14):12101-7. PubMed ID: 21233211 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p. Bousset L; Redeker V; Decottignies P; Dubois S; Le Maréchal P; Melki R Biochemistry; 2004 May; 43(17):5022-32. PubMed ID: 15109261 [TBL] [Abstract][Full Text] [Related]
3. The yeast prion protein Ure2: insights into the mechanism of amyloid formation. Chen LJ; Sawyer EB; Perrett S Biochem Soc Trans; 2011 Oct; 39(5):1359-64. PubMed ID: 21936815 [TBL] [Abstract][Full Text] [Related]
4. In vitro analysis of SpUre2p, a prion-related protein, exemplifies the relationship between amyloid and prion. Immel F; Jiang Y; Wang YQ; Marchal C; Maillet L; Perrett S; Cullin C J Biol Chem; 2007 Mar; 282(11):7912-20. PubMed ID: 17234629 [TBL] [Abstract][Full Text] [Related]
5. Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions. Sabaté R; Villar-Piqué A; Espargaró A; Ventura S Biomacromolecules; 2012 Feb; 13(2):474-83. PubMed ID: 22176525 [TBL] [Abstract][Full Text] [Related]
6. Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domains. Jiang Y; Li H; Zhu L; Zhou JM; Perrett S J Biol Chem; 2004 Jan; 279(5):3361-9. PubMed ID: 14610069 [TBL] [Abstract][Full Text] [Related]
7. Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch. Fei L; Perrett S J Biol Chem; 2009 Apr; 284(17):11134-41. PubMed ID: 19258323 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen/deuterium exchange mass spectrometric analysis of conformational changes accompanying the assembly of the yeast prion Ure2p into protein fibrils. Redeker V; Halgand F; Le Caer JP; Bousset L; Laprévote O; Melki R J Mol Biol; 2007 Jun; 369(4):1113-25. PubMed ID: 17482207 [TBL] [Abstract][Full Text] [Related]
9. Structure of the prion Ure2p in protein fibrils assembled in vitro. Fay N; Redeker V; Savistchenko J; Dubois S; Bousset L; Melki R J Biol Chem; 2005 Nov; 280(44):37149-58. PubMed ID: 16131495 [TBL] [Abstract][Full Text] [Related]
10. The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. Bousset L; Thomson NH; Radford SE; Melki R EMBO J; 2002 Jun; 21(12):2903-11. PubMed ID: 12065404 [TBL] [Abstract][Full Text] [Related]
11. Stability, folding, dimerization, and assembly properties of the yeast prion Ure2p. Thual C; Bousset L; Komar AA; Walter S; Buchner J; Cullin C; Melki R Biochemistry; 2001 Feb; 40(6):1764-73. PubMed ID: 11327838 [TBL] [Abstract][Full Text] [Related]
12. Structure and assembly properties of the N-terminal domain of the prion Ure2p in isolation and in its natural context. Bousset L; Bonnefoy J; Sourigues Y; Wien F; Melki R PLoS One; 2010 Mar; 5(3):e9760. PubMed ID: 20339590 [TBL] [Abstract][Full Text] [Related]
13. The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro. Wang K; Redeker V; Madiona K; Melki R; Kabani M PLoS One; 2015; 10(6):e0131789. PubMed ID: 26115123 [TBL] [Abstract][Full Text] [Related]
14. Deletion of a Ure2 C-terminal prion-inhibiting region promotes the rate of fibril seed formation and alters interaction with Hsp40. Chen L; Chen LJ; Wang HY; Wang YQ; Perrett S Protein Eng Des Sel; 2011 Jan; 24(1-2):69-78. PubMed ID: 21076138 [TBL] [Abstract][Full Text] [Related]
15. The fibrils of Ure2p homologs from Saccharomyces cerevisiae and Saccharoymyces paradoxus have similar cross-β structure in both dried and hydrated forms. Wang YQ; Bongiovanni M; Gras SL; Perrett S J Struct Biol; 2011 Jun; 174(3):505-11. PubMed ID: 21419850 [TBL] [Abstract][Full Text] [Related]
16. Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p. Chan JC; Oyler NA; Yau WM; Tycko R Biochemistry; 2005 Aug; 44(31):10669-80. PubMed ID: 16060675 [TBL] [Abstract][Full Text] [Related]
17. The Yarrowia lipolytica orthologs of Sup35p assemble into thioflavin T-negative amyloid fibrils. Kabani M; Melki R Biochem Biophys Res Commun; 2020 Aug; 529(3):533-539. PubMed ID: 32736670 [TBL] [Abstract][Full Text] [Related]
18. Yeast prions assembly and propagation: contributions of the prion and non-prion moieties and the nature of assemblies. Kabani M; Melki R Prion; 2011; 5(4):277-84. PubMed ID: 22052349 [TBL] [Abstract][Full Text] [Related]
19. Assembly of the yeast prion Ure2p into protein fibrils. Thermodynamic and kinetic characterization. Fay N; Inoue Y; Bousset L; Taguchi H; Melki R J Biol Chem; 2003 Aug; 278(32):30199-205. PubMed ID: 12777380 [TBL] [Abstract][Full Text] [Related]
20. The cellular concentration of the yeast Ure2p prion protein affects its propagation as a prion. Crapeau M; Marchal C; Cullin C; Maillet L Mol Biol Cell; 2009 Apr; 20(8):2286-96. PubMed ID: 19225154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]