BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21233522)

  • 21. BetaDL: A protein beta-sheet predictor utilizing a deep learning model and independent set solution.
    Dehghani T; Naghibzadeh M; Eghdami M
    Comput Biol Med; 2019 Jan; 104():241-249. PubMed ID: 30530227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fold recognition and accurate sequence-structure alignment of sequences directing beta-sheet proteins.
    McDonnell AV; Menke M; Palmer N; King J; Cowen L; Berger B
    Proteins; 2006 Jun; 63(4):976-85. PubMed ID: 16547930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. KScons: a Bayesian approach for protein residue contact prediction using the knob-socket model of protein tertiary structure.
    Li Q; Dahl DB; Vannucci M; Joo H; Tsai JW
    Bioinformatics; 2016 Dec; 32(24):3774-3781. PubMed ID: 27559156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parallel and antiparallel β-strands differ in amino acid composition and availability of short constituent sequences.
    Tsutsumi M; Otaki JM
    J Chem Inf Model; 2011 Jun; 51(6):1457-64. PubMed ID: 21520893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using inferred residue contacts to distinguish between correct and incorrect protein models.
    Miller CS; Eisenberg D
    Bioinformatics; 2008 Jul; 24(14):1575-82. PubMed ID: 18511466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis.
    Bryan AW; Menke M; Cowen LJ; Lindquist SL; Berger B
    PLoS Comput Biol; 2009 Mar; 5(3):e1000333. PubMed ID: 19325876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The interstrand amino acid pairs play a significant role in determining the parallel or antiparallel orientation of beta-strands.
    Zhang N; Ruan J; Duan G; Gao S; Zhang T
    Biochem Biophys Res Commun; 2009 Aug; 386(3):537-43. PubMed ID: 19540200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beta edge strands in protein structure prediction and aggregation.
    Siepen JA; Radford SE; Westhead DR
    Protein Sci; 2003 Oct; 12(10):2348-59. PubMed ID: 14500893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein fold recognition by mapping predicted secondary structures.
    Russell RB; Copley RR; Barton GJ
    J Mol Biol; 1996 Jun; 259(3):349-65. PubMed ID: 8676374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm.
    Sadeghi M; Parto S; Arab S; Ranjbar B
    FEBS Lett; 2005 Jun; 579(16):3397-400. PubMed ID: 15936021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using PconsC4 and PconsFold2 to Predict Protein Structure.
    Bassot C; Menendez Hurtado D; Elofsson A
    Curr Protoc Bioinformatics; 2019 Jun; 66(1):e75. PubMed ID: 31063641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy.
    Domingues FS; Lackner P; Andreeva A; Sippl MJ
    J Mol Biol; 2000 Apr; 297(4):1003-13. PubMed ID: 10736233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive Smith-Waterman residue match seeding for protein structural alignment.
    Topham CM; Rouquier M; Tarrat N; André I
    Proteins; 2013 Oct; 81(10):1823-39. PubMed ID: 23720362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J; Feng JA
    Proteins; 2005 Feb; 58(3):628-37. PubMed ID: 15616964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of beta-strand packing interactions using the signature product.
    Brown WM; Martin S; Chabarek JP; Strauss C; Faulon JL
    J Mol Model; 2006 Feb; 12(3):355-61. PubMed ID: 16365772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting protein β-sheet contacts using a maximum entropy-based correlated mutation measure.
    Burkoff NS; Várnai C; Wild DL
    Bioinformatics; 2013 Mar; 29(5):580-7. PubMed ID: 23314126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved beta-protein structure prediction by multilevel optimization of nonlocal strand pairings and local backbone conformation.
    Bradley P; Baker D
    Proteins; 2006 Dec; 65(4):922-9. PubMed ID: 17034045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting solvent accessibility: higher accuracy using Bayesian statistics and optimized residue substitution classes.
    Thompson MJ; Goldstein RA
    Proteins; 1996 May; 25(1):38-47. PubMed ID: 8727318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.