These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 21233533)

  • 21. A conserved RNA structure within the HCV IRES eIF3-binding site.
    Collier AJ; Gallego J; Klinck R; Cole PT; Harris SJ; Harrison GP; Aboul-Ela F; Varani G; Walker S
    Nat Struct Biol; 2002 May; 9(5):375-80. PubMed ID: 11927954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased inhibitory ability of conjugated RNA aptamers against the HCV IRES.
    Kikuchi K; Umehara T; Nishikawa F; Fukuda K; Hasegawa T; Nishikawa S
    Biochem Biophys Res Commun; 2009 Aug; 386(1):118-23. PubMed ID: 19501043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SAR by MS: discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal ribosome entry site IIA subdomain.
    Seth PP; Miyaji A; Jefferson EA; Sannes-Lowery KA; Osgood SA; Propp SS; Ranken R; Massire C; Sampath R; Ecker DJ; Swayze EE; Griffey RH
    J Med Chem; 2005 Nov; 48(23):7099-102. PubMed ID: 16279767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hepatitis C virus and the related bovine viral diarrhea virus considerably differ in the functional organization of the 5' non-translated region: implications for the viral life cycle.
    Grassmann CW; Yu H; Isken O; Behrens SE
    Virology; 2005 Mar; 333(2):349-66. PubMed ID: 15721367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Down-regulation of the internal ribosome entry site (IRES)-mediated translation of the hepatitis C virus: critical role of binding of the stem-loop IIId domain of IRES and the viral core protein.
    Shimoike T; Koyama C; Murakami K; Suzuki R; Matsuura Y; Miyamura T; Suzuki T
    Virology; 2006 Feb; 345(2):434-45. PubMed ID: 16297950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative analysis of intracellular trans-splicing ribozyme activity against hepatitis C virus internal ribosome entry site.
    Ryu KJ; Lee SW
    J Microbiol; 2004 Dec; 42(4):361-4. PubMed ID: 15650696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic analysis of internal ribosomal entry site on hepatitis C virus RNA: implication for involvement of the highly ordered structure and cell type-specific transacting factors.
    Kamoshita N; Tsukiyama-Kohara K; Kohara M; Nomoto A
    Virology; 1997 Jun; 233(1):9-18. PubMed ID: 9201213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA.
    Ji H; Fraser CS; Yu Y; Leary J; Doudna JA
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):16990-5. PubMed ID: 15563596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interferons alpha, beta, gamma each inhibit hepatitis C virus replication at the level of internal ribosome entry site-mediated translation.
    Dash S; Prabhu R; Hazari S; Bastian F; Garry R; Zou W; Haque S; Joshi V; Regenstein FG; Thung SN
    Liver Int; 2005 Jun; 25(3):580-94. PubMed ID: 15910496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice.
    McCaffrey AP; Meuse L; Karimi M; Contag CH; Kay MA
    Hepatology; 2003 Aug; 38(2):503-8. PubMed ID: 12883495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes.
    Macejak DG; Jensen KL; Jamison SF; Domenico K; Roberts EC; Chaudhary N; von Carlowitz I; Bellon L; Tong MJ; Conrad A; Pavco PA; Blatt LM
    Hepatology; 2000 Mar; 31(3):769-76. PubMed ID: 10706571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic metallodrugs targeting HCV IRES RNA.
    Bradford S; Cowan JA
    Chem Commun (Camb); 2012 Mar; 48(25):3118-20. PubMed ID: 22343977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SCAN--a high-throughput assay for detecting small molecule binding to RNA targets.
    Baugh C; Wang S; Li B; Appleman JR; Thompson PA
    J Biomol Screen; 2009 Mar; 14(3):219-29. PubMed ID: 19211778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting RNA with small molecules.
    Wilson WD; Li K
    Curr Med Chem; 2000 Jan; 7(1):73-98. PubMed ID: 10637358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA as a drug target: chemical, modelling, and evolutionary tools.
    Hermann T; Westhof E
    Curr Opin Biotechnol; 1998 Feb; 9(1):66-73. PubMed ID: 9503590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacophore-Based Discovery of Viral RNA Conformational Modulators.
    Martín-Villamil M; Sanmartín I; Moreno Á; Gallego J
    Pharmaceuticals (Basel); 2022 Jun; 15(6):. PubMed ID: 35745667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNAs and targeted therapy: small molecules of unlimited potentials.
    Fassan M; Baffa R
    Curr Opin Genet Dev; 2013 Feb; 23(1):75-7. PubMed ID: 23523049
    [No Abstract]   [Full Text] [Related]  

  • 38. Machine learning approaches to optimize small-molecule inhibitors for RNA targeting.
    Grimberg H; Tiwari VS; Tam B; Gur-Arie L; Gingold D; Polachek L; Akabayov B
    J Cheminform; 2022 Feb; 14(1):4. PubMed ID: 35109921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-based virtual screening of unbiased and RNA-focused libraries to identify new ligands for the HCV IRES model system.
    Kallert E; Almena Rodriguez L; Husmann JÅ; Blatt K; Kersten C
    RSC Med Chem; 2024 May; 15(5):1527-1538. PubMed ID: 38784459
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.