These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. On the catalysis of calcium oxalate dihydrate formation by osteopontin peptides. Chan BP; Vincent K; Lajoie GA; Goldberg HA; Grohe B; Hunter GK Colloids Surf B Biointerfaces; 2012 Aug; 96():22-8. PubMed ID: 22503630 [TBL] [Abstract][Full Text] [Related]
3. Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. Ryall RL; Chauvet MC; Grover PK BJU Int; 2005 Sep; 96(4):654-63. PubMed ID: 16104927 [TBL] [Abstract][Full Text] [Related]
4. Association of urinary macromolecules with calcium oxalate crystals induced in vitro in normal human and rat urine. Atmani F; Opalko FJ; Khan SR Urol Res; 1996; 24(1):45-50. PubMed ID: 8966841 [TBL] [Abstract][Full Text] [Related]
5. Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and polyaspartate peptide showing occlusion by sectoral (compositional) zoning. Chien YC; Masica DL; Gray JJ; Nguyen S; Vali H; McKee MD J Biol Chem; 2009 Aug; 284(35):23491-501. PubMed ID: 19581305 [TBL] [Abstract][Full Text] [Related]
6. The osteopontin-controlled switching of calcium oxalate monohydrate morphologies in artificial urine provides insights into the formation of papillary kidney stones. Langdon A; Grohe B Colloids Surf B Biointerfaces; 2016 Oct; 146():296-306. PubMed ID: 27362921 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of osteopontin peptide into kidney stone-related calcium oxalate monohydrate crystals: a quantitative study. Gleberzon JS; Liao Y; Mittler S; Goldberg HA; Grohe B Urolithiasis; 2019 Oct; 47(5):425-440. PubMed ID: 30569197 [TBL] [Abstract][Full Text] [Related]
9. The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells. Thurgood LA; Sørensen ES; Ryall RL Urol Res; 2012 Feb; 40(1):1-15. PubMed ID: 21932131 [TBL] [Abstract][Full Text] [Related]
10. Calcium phosphate controls nucleation and growth of calcium oxalate crystal phases in kidney stones. Michibata U; Maruyama M; Tanaka Y; Yoshimura M; Yoshikawa H; Takano K; Furukawa Y; Momma K; Tajiri R; Taguchi K; Hamamoto S; Okada A; Kohri K; Yasui T; Usami S; Imanishi M; Mori Y Biomed Res; 2024; 45(3):103-113. PubMed ID: 38839353 [TBL] [Abstract][Full Text] [Related]
11. Calcium oxalate crystallization in untreated urine, centrifuged and filtered urine and ultrafiltered urine. Guerra A; Meschi T; Allegri F; Schianchi T; Adorni G; Novarini A; Borghi L Clin Chem Lab Med; 2004 Jan; 42(1):45-50. PubMed ID: 15061379 [TBL] [Abstract][Full Text] [Related]
12. Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals. Thurgood LA; Cook AF; Sørensen ES; Ryall RL Urol Res; 2010 Oct; 38(5):357-76. PubMed ID: 20652561 [TBL] [Abstract][Full Text] [Related]
13. Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. Sheng X; Ward MD; Wesson JA J Am Soc Nephrol; 2005 Jul; 16(7):1904-8. PubMed ID: 15930089 [TBL] [Abstract][Full Text] [Related]
14. Dual roles of brushite crystals in calcium oxalate crystallization provide physicochemical mechanisms underlying renal stone formation. Tang R; Nancollas GH; Giocondi JL; Hoyer JR; Orme CA Kidney Int; 2006 Jul; 70(1):71-8. PubMed ID: 16641926 [TBL] [Abstract][Full Text] [Related]
15. Identification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in the urine of healthy and stone forming subjects. Atmani F; Glenton PA; Khan SR Urol Res; 1998; 26(3):201-7. PubMed ID: 9694603 [TBL] [Abstract][Full Text] [Related]
16. In vitro effects on calcium oxalate crystallization kinetics and crystal morphology of an aqueous extract from Ceterach officinarum: Analysis of a potential antilithiatic mechanism. De Bellis R; Piacentini MP; Meli MA; Mattioli M; Menotta M; Mari M; Valentini L; Palomba L; Desideri D; Chiarantini L PLoS One; 2019; 14(6):e0218734. PubMed ID: 31238335 [TBL] [Abstract][Full Text] [Related]
17. Multicolor imaging of calcium-binding proteins in human kidney stones for elucidating the effects of proteins on crystal growth. Tanaka Y; Maruyama M; Okada A; Furukawa Y; Momma K; Sugiura Y; Tajiri R; Sawada KP; Tanaka S; Takano K; Taguchi K; Hamamoto S; Ando R; Tsukamoto K; Yoshimura M; Mori Y; Yasui T Sci Rep; 2021 Aug; 11(1):16841. PubMed ID: 34446727 [TBL] [Abstract][Full Text] [Related]
18. The effect of intracrystalline and surface-bound osteopontin on the attachment of calcium oxalate dihydrate crystals to Madin-Darby canine kidney (MDCK) cells in ultrafiltered human urine. Thurgood LA; Sørensen ES; Ryall RL BJU Int; 2012 Apr; 109(7):1100-9. PubMed ID: 21883862 [TBL] [Abstract][Full Text] [Related]
19. Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. Grohe B; O'Young J; Ionescu DA; Lajoie G; Rogers KA; Karttunen M; Goldberg HA; Hunter GK J Am Chem Soc; 2007 Dec; 129(48):14946-51. PubMed ID: 17994739 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the specific incorporation of intracrystalline proteins into urinary calcium oxalate monohydrate and dihydrate crystals. Thurgood LA; Wang T; Chataway TK; Ryall RL J Proteome Res; 2010 Sep; 9(9):4745-57. PubMed ID: 20672853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]