These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 21234734)
1. Involvement of brain ketone bodies and the noradrenergic pathway in diabetic hyperphagia in rats. Iwata K; Kinoshita M; Yamada S; Imamura T; Uenoyama Y; Tsukamura H; Maeda K J Physiol Sci; 2011 Mar; 61(2):103-13. PubMed ID: 21234734 [TBL] [Abstract][Full Text] [Related]
2. Central injection of ketone body suppresses luteinizing hormone release via the catecholaminergic pathway in female rats. Iwata K; Kinoshita M; Susaki N; Uenoyama Y; Tsukamura H; Maeda K J Reprod Dev; 2011 Jun; 57(3):379-84. PubMed ID: 21358145 [TBL] [Abstract][Full Text] [Related]
3. Evidence that hypothalamic neuropeptide Y gene expression and NPY levels in the paraventricular nucleus increase before the onset of hyperphagia in experimental diabetes. Sahu A; Sninsky CA; Kalra SP Brain Res; 1997 May; 755(2):339-42. PubMed ID: 9175903 [TBL] [Abstract][Full Text] [Related]
4. Neuropeptide Y release from the paraventricular nucleus increases in association with hyperphagia in streptozotocin-induced diabetic rats. Sahu A; Sninsky CA; Phelps CP; Dube MG; Kalra PS; Kalra SP Endocrinology; 1992 Dec; 131(6):2979-85. PubMed ID: 1446635 [TBL] [Abstract][Full Text] [Related]
5. Paraventricular alpha1- and alpha2-adrenergic receptors mediate hindbrain lipoprivation-induced suppression of luteinizing hormone pulses in female rats. Sajapitak S; Uenoyama Y; Yamada S; Kinoshita M; Iwata K; Bari FY; I'anson H; Tsukamula H; Maeda K J Reprod Dev; 2008 Jun; 54(3):198-202. PubMed ID: 18344615 [TBL] [Abstract][Full Text] [Related]
6. Effects of streptozotocin-induced diabetes on markers of skeletal muscle metabolism and monocarboxylate transporter 1 to monocarboxylate transporter 4 transporters. Py G; Lambert K; Milhavet O; Eydoux N; Préfaut C; Mercier J Metabolism; 2002 Jul; 51(7):807-13. PubMed ID: 12077722 [TBL] [Abstract][Full Text] [Related]
7. Alterations in monoamines and GABA in the ventromedial and paraventricular nuclei of the hypothalamus following cold exposure: a reduction in noradrenaline induces hyperphagia. Ohtani N; Sugano T; Ohta M Brain Res; 1999 Sep; 842(1):6-14. PubMed ID: 10526090 [TBL] [Abstract][Full Text] [Related]
8. Regional ketone body utilization by rat brain in starvation and diabetes. Hawkins RA; Mans AM; Davis DW Am J Physiol; 1986 Feb; 250(2 Pt 1):E169-78. PubMed ID: 2937307 [TBL] [Abstract][Full Text] [Related]
9. Expression of the genes encoding hypothalamic feeding-related neuropeptides in the streptozotocin-induced diabetic rats with variable hyperglycemia and hyperphagia. Sonoda S; Yoshimura M; Ueno H; Nishimura H; Nishimura K; Tanaka K; Motojima Y; Saito R; Maruyama T; Hashimoto H; Okada Y; Tanaka Y; Ueta Y Neuropeptides; 2019 Jun; 75():34-40. PubMed ID: 30928158 [No Abstract] [Full Text] [Related]
10. PVN-hindbrain pathway involved in the hypothalamic hyperphagia-obesity syndrome. Kirchgessner AL; Sclafani A Physiol Behav; 1988; 42(6):517-28. PubMed ID: 3166142 [TBL] [Abstract][Full Text] [Related]
11. STZ-induced diabetes decreases and insulin normalizes POMC mRNA in arcuate nucleus and pituitary in rats. Kim EM; Grace MK; Welch CC; Billington CJ; Levine AS Am J Physiol; 1999 May; 276(5):R1320-6. PubMed ID: 10233022 [TBL] [Abstract][Full Text] [Related]
13. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Ruderman NB; Ross PS; Berger M; Goodman MN Biochem J; 1974 Jan; 138(1):1-10. PubMed ID: 4275704 [TBL] [Abstract][Full Text] [Related]
14. Ketone body utilization and its metabolic effect in resting muscles of normal and streptozotocin-diabetic rats. Okuda Y; Kawai K; Ohmori H; Yamashita K Endocrinol Jpn; 1991 Jun; 38(3):245-51. PubMed ID: 1838977 [TBL] [Abstract][Full Text] [Related]
15. Morphological Analysis of the Hindbrain Glucose Sensor-Hypothalamic Neural Pathway Activated by Hindbrain Glucoprivation. Sato M; Minabe S; Sakono T; Magata F; Nakamura S; Watanabe Y; Inoue N; Uenoyama Y; Tsukamura H; Matsuda F Endocrinology; 2021 Sep; 162(9):. PubMed ID: 34161572 [TBL] [Abstract][Full Text] [Related]
16. Beneficial effects of metformin supplementation in hypothalamic paraventricular nucleus and arcuate nucleus of type 2 diabetic rats. Yu XJ; Chen YM; Liu XJ; Bai XJ; Liu KL; Fu LY; Gao HL; Sun TZ; Shi XL; Qi J; Li Y; Kang YM Toxicol Appl Pharmacol; 2022 Feb; 437():115893. PubMed ID: 35085591 [TBL] [Abstract][Full Text] [Related]
17. Norepinephrine control of ventromedial hypothalamic nucleus glucoregulatory neurotransmitter expression in the female rat: Role of monocarboxylate transporter function. Hasan Mahmood ASM; Mandal SK; Bheemanapally K; Ibrahim MMH; Briski KP Mol Cell Neurosci; 2019 Mar; 95():51-58. PubMed ID: 30660767 [TBL] [Abstract][Full Text] [Related]
18. Altered functionality of the corticotrophin-releasing hormone receptor-2 in the hypothalamic paraventricular nucleus of hyperphagic maternally separated rats. Alcántara-Alonso V; Amaya MI; Matamoros-Trejo G; de Gortari P Neuropeptides; 2017 Jun; 63():75-82. PubMed ID: 28162848 [TBL] [Abstract][Full Text] [Related]
19. Morphological analysis for neuronal pathway from the hindbrain ependymocytes to the hypothalamic kisspeptin neurons. Deura C; Minabe S; Ikegami K; Inoue N; Uenoyama Y; Maeda KI; Tsukamura H J Reprod Dev; 2019 Apr; 65(2):129-137. PubMed ID: 30662010 [TBL] [Abstract][Full Text] [Related]
20. Weaning stage hyperglycemia induces glucose-insensitivity in arcuate POMC neurons and hyperphagia in type 2 diabetic GK rats. Ando A; Gantulga D; Nakata M; Maekawa F; Dezaki K; Ishibashi S; Yada T Neuropeptides; 2018 Apr; 68():49-56. PubMed ID: 29525472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]