These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21234751)

  • 1. Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane.
    Soyka F; Robuffo Giordano P; Beykirch K; Bülthoff HH
    Exp Brain Res; 2011 Mar; 209(1):95-107. PubMed ID: 21234751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling direction discrimination thresholds for yaw rotations around an earth-vertical axis for arbitrary motion profiles.
    Soyka F; Giordano PR; Barnett-Cowan M; Bülthoff HH
    Exp Brain Res; 2012 Jul; 220(1):89-99. PubMed ID: 22623095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visuovestibular perception of self-motion modeled as a dynamic optimization process.
    Reymond G; Droulez J; Kemeny A
    Biol Cybern; 2002 Oct; 87(4):301-14. PubMed ID: 12386745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates.
    MacNeilage PR; Banks MS; DeAngelis GC; Angelaki DE
    J Neurosci; 2010 Jul; 30(27):9084-94. PubMed ID: 20610742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perception of direction of visual motion. I. Influence of angular body acceleration and tilt.
    Loose R; Probst T; Wist ER
    Behav Brain Res; 1996 Nov; 81(1-2):141-6. PubMed ID: 8950010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human discrimination of translational accelerations.
    Naseri AR; Grant PR
    Exp Brain Res; 2012 May; 218(3):455-64. PubMed ID: 22354103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibular modulation of muscle sympathetic nerve activity by the utricle during sub-perceptual sinusoidal linear acceleration in humans.
    Hammam E; Hau CL; Wong KS; Kwok K; Macefield VG
    Exp Brain Res; 2014 Apr; 232(4):1379-88. PubMed ID: 24504198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent integration of auditory and vestibular cues for self-motion perception.
    Shayman CS; Peterka RJ; Gallun FJ; Oh Y; Chang NN; Hullar TE
    J Neurophysiol; 2020 Mar; 123(3):936-944. PubMed ID: 31940239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal visual-vestibular integration under conditions of conflicting intersensory motion profiles.
    Butler JS; Campos JL; Bülthoff HH
    Exp Brain Res; 2015 Feb; 233(2):587-97. PubMed ID: 25361642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thresholds for human perception of roll tilt motion: patterns of variability based on visual, vestibular, and mixed cues.
    Mardirossian V; Karmali F; Merfeld D
    Otol Neurotol; 2014 Jun; 35(5):857-60. PubMed ID: 24691502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal processing of self-motion: modeling reaction times for rotations and translations.
    Soyka F; Bülthoff HH; Barnett-Cowan M
    Exp Brain Res; 2013 Jul; 228(1):51-62. PubMed ID: 23665749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Otolithic thresholds influence the perception of passive linear displacement.
    Glasauer S; Israël I
    Acta Otolaryngol Suppl; 1995; 520 Pt 1():41-4. PubMed ID: 8749076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A coordinate system for visual motion perception.
    Darling WG; Pizzimenti MA
    Exp Brain Res; 2001 Nov; 141(2):174-83. PubMed ID: 11713629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human vestibular perceptual thresholds for pitch tilt are slightly worse than for roll tilt across a range of frequencies.
    Suri K; Clark TK
    Exp Brain Res; 2020 Jun; 238(6):1499-1509. PubMed ID: 32444940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal estimator model for human spatial orientation.
    Borah J; Young LR; Curry RE
    Ann N Y Acad Sci; 1988; 545():51-73. PubMed ID: 3071213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow.
    Chen A; DeAngelis GC; Angelaki DE
    J Neurosci; 2010 Feb; 30(8):3022-42. PubMed ID: 20181599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thresholds for detection of motion direction during passive lateral whole-body acceleration in normal subjects and patients with bilateral loss of labyrinthine function.
    Gianna C; Heimbrand S; Gresty M
    Brain Res Bull; 1996; 40(5-6):443-7; discussion 448-9. PubMed ID: 8886372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing of visual motion direction in the fronto-parallel plane in the stationary or moving observer.
    Probst T; Loose R; Niedeggen M; Wist ER
    Behav Brain Res; 1995 Oct; 70(2):133-44. PubMed ID: 8561904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of acceleration and jerk in perception of above-threshold surge motion.
    de Winkel KN; Soyka F; Bülthoff HH
    Exp Brain Res; 2020 Mar; 238(3):699-711. PubMed ID: 32060563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.