These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21234794)

  • 1. Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons.
    Dunmyre JR; Del Negro CA; Rubin JE
    J Comput Neurosci; 2011 Oct; 31(2):305-28. PubMed ID: 21234794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation of intrinsic bursting and calcium oscillations underlying activity patterns of model pre-Bötzinger complex neurons.
    Park C; Rubin JE
    J Comput Neurosci; 2013 Apr; 34(2):345-66. PubMed ID: 23053862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent sodium current, membrane properties and bursting behavior of pre-bötzinger complex inspiratory neurons in vitro.
    Del Negro CA; Koshiya N; Butera RJ; Smith JC
    J Neurophysiol; 2002 Nov; 88(5):2242-50. PubMed ID: 12424266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation.
    Del Negro CA; Morgado-Valle C; Hayes JA; Mackay DD; Pace RW; Crowder EA; Feldman JL
    J Neurosci; 2005 Jan; 25(2):446-53. PubMed ID: 15647488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of persistent sodium current in mouse preBötzinger Complex neurons and respiratory rhythm generation.
    Pace RW; Mackay DD; Feldman JL; Del Negro CA
    J Physiol; 2007 Apr; 580(Pt. 2):485-96. PubMed ID: 17272351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study.
    Golomb D; Yue C; Yaari Y
    J Neurophysiol; 2006 Oct; 96(4):1912-26. PubMed ID: 16807352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm.
    Lal A; Oku Y; Hülsmann S; Okada Y; Miwakeichi F; Kawai S; Tamura Y; Ishiguro M
    J Comput Neurosci; 2011 Apr; 30(2):225-40. PubMed ID: 20544264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple timescale mixed bursting dynamics in a respiratory neuron model.
    Wang Y; Rubin JE
    J Comput Neurosci; 2016 Dec; 41(3):245-268. PubMed ID: 27491968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two types of independent bursting mechanisms in inspiratory neurons: an integrative model.
    Toporikova N; Butera RJ
    J Comput Neurosci; 2011 Jun; 30(3):515-28. PubMed ID: 20838868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the pre-Bötzinger complex: a computational modelling study.
    Jasinski PE; Molkov YI; Shevtsova NA; Smith JC; Rybak IA
    Eur J Neurosci; 2013 Jan; 37(2):212-30. PubMed ID: 23121313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro.
    Pace RW; Del Negro CA
    Eur J Neurosci; 2008 Dec; 28(12):2434-42. PubMed ID: 19032588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhythmic bursting in the pre-Bötzinger complex: mechanisms and models.
    Rybak IA; Molkov YI; Jasinski PE; Shevtsova NA; Smith JC
    Prog Brain Res; 2014; 209():1-23. PubMed ID: 24746040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycinergic pacemaker neurons in preBötzinger complex of neonatal mouse.
    Morgado-Valle C; Baca SM; Feldman JL
    J Neurosci; 2010 Mar; 30(10):3634-9. PubMed ID: 20219997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic properties of persistent Na
    Yamanishi T; Koizumi H; Navarro MA; Milescu LS; Smith JC
    J Gen Physiol; 2018 Nov; 150(11):1523-1540. PubMed ID: 30301870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic neurotransmission in the preBötzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm.
    Shao XM; Feldman JL
    Neuroscience; 2005; 130(4):1069-81. PubMed ID: 15653001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-dependent contribution of the hyperpolarization-activated Na+/K+ and persistent Na+ currents to respiratory rhythmogenesis in vivo.
    Montandon G; Horner RL
    J Neurosci; 2013 May; 33(20):8716-28. PubMed ID: 23678115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Background sodium current underlying respiratory rhythm regularity.
    Chevalier M; Ben-Mabrouk F; Tryba AK
    Eur J Neurosci; 2008 Dec; 28(12):2423-33. PubMed ID: 19032590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inspiratory bursts in the preBötzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice.
    Pace RW; Mackay DD; Feldman JL; Del Negro CA
    J Physiol; 2007 Jul; 582(Pt 1):113-25. PubMed ID: 17446214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Putting the theory into 'burstlet theory' with a biophysical model of burstlets and bursts in the respiratory preBötzinger complex.
    Phillips RS; Rubin JE
    Elife; 2022 Apr; 11():. PubMed ID: 35380537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent synchronized bursting activity in cortical tissues with low magnesium concentration: a modeling study.
    Golomb D; Shedmi A; Curtu R; Ermentrout GB
    J Neurophysiol; 2006 Feb; 95(2):1049-67. PubMed ID: 16236776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.