These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21234987)

  • 41. Interaction between a self-assembling peptide and hydrophobic compounds.
    Tang F; Zhao X
    J Biomater Sci Polym Ed; 2010; 21(5):677-90. PubMed ID: 20338100
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities.
    Samanta SK; Pal A; Bhattacharya S
    Langmuir; 2009 Aug; 25(15):8567-78. PubMed ID: 19402602
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hexagonal superlattice of chiral conducting polymers self-assembled by mimicking beta-sheet proteins with anisotropic electrical transport.
    Yan Y; Wang R; Qiu X; Wei Z
    J Am Chem Soc; 2010 Sep; 132(34):12006-12. PubMed ID: 20701286
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
    Moriuchi T; Hirao T
    Acc Chem Res; 2010 Jul; 43(7):1040-51. PubMed ID: 20377253
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study of on-resin convergent synthesis of N-linked glycopeptides containing a large high mannose N-linked oligosaccharide.
    Chen R; Tolbert TJ
    J Am Chem Soc; 2010 Mar; 132(9):3211-6. PubMed ID: 20158247
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Separation by hydrophobic interaction chromatography and structural determination by mass spectrometry of mannosylated glycoforms of a recombinant transferrin-exendin-4 fusion protein from yeast.
    Zolodz MD; Herberg JT; Narepekha HE; Raleigh E; Farber MR; Dufield RL; Boyle DM
    J Chromatogr A; 2010 Jan; 1217(2):225-34. PubMed ID: 19896672
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lamellar bridged silsesquioxanes: self-assembly through a combination of hydrogen bonding and hydrophobic interactions.
    Moreau JJ; Vellutini L; Wong Chi Man M; Bied C; Dieudonné P; Bantignies JL; Sauvajol JL
    Chemistry; 2005 Feb; 11(5):1527-37. PubMed ID: 15662678
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface.
    Mark SS; Sandhyarani N; Zhu C; Campagnolo C; Batt CA
    Langmuir; 2004 Aug; 20(16):6808-17. PubMed ID: 15274589
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probing the interior of peptide amphiphile supramolecular aggregates.
    Tovar JD; Claussen RC; Stupp SI
    J Am Chem Soc; 2005 May; 127(20):7337-45. PubMed ID: 15898782
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SPOT synthesis of peptide arrays on self-assembled monolayers and their evaluation as enzyme substrates.
    Laurent N; Haddoub R; Voglmeir J; Wong SC; Gaskell SJ; Flitsch SL
    Chembiochem; 2008 Nov; 9(16):2592-6. PubMed ID: 18821537
    [No Abstract]   [Full Text] [Related]  

  • 51. Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails.
    Xu XD; Jin Y; Liu Y; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):329-35. PubMed ID: 20678903
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toward the development of peptide nanofilaments and nanoropes as smart materials.
    Wagner DE; Phillips CL; Ali WM; Nybakken GE; Crawford ED; Schwab AD; Smith WF; Fairman R
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12656-61. PubMed ID: 16129839
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid Soft Nanomaterials Composed of DNA Microspheres and Supramolecular Nanostructures of Semi-artificial Glycopeptides.
    Higashi SL; Shibata A; Kitamura Y; Hirosawa KM; Suzuki KGN; Matsuura K; Ikeda M
    Chemistry; 2019 Sep; 25(51):11955-11962. PubMed ID: 31268200
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures.
    Das AK; Collins R; Ulijn RV
    Small; 2008 Feb; 4(2):279-87. PubMed ID: 18214877
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly.
    Whaley SR; English DS; Hu EL; Barbara PF; Belcher AM
    Nature; 2000 Jun; 405(6787):665-8. PubMed ID: 10864319
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aerosol-based self-assembly of nanoparticles into solid or hollow mesospheres.
    Wu C; Lee D; Zachariah MR
    Langmuir; 2010 Mar; 26(6):4327-30. PubMed ID: 20041678
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of the sequence and size of non-polar residues on self-assembly of amphiphilic peptides.
    Wang K; Keasling JD; Muller SJ
    Int J Biol Macromol; 2005 Sep; 36(4):232-40. PubMed ID: 16055181
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular basis for water-promoted supramolecular chirality inversion in helical rosette nanotubes.
    Johnson RS; Yamazaki T; Kovalenko A; Fenniri H
    J Am Chem Soc; 2007 May; 129(17):5735-43. PubMed ID: 17417852
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Native beta-lactoglobulin self-assembles into a hexagonal columnar phase on a solid surface.
    Rizzuti B; Zappone B; De Santo MP; Guzzi R
    Langmuir; 2010 Jan; 26(2):1090-5. PubMed ID: 19877696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-assembly of nanodonut structure from a cone-shaped designer lipid-like peptide surfactant.
    Khoe U; Yang Y; Zhang S
    Langmuir; 2009 Apr; 25(7):4111-4. PubMed ID: 19007256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.