BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21235156)

  • 61. Adsorption of phorate, an organophosphorus pesticide, on vertisol.
    Rani R; Juwarkar A
    Arch Environ Contam Toxicol; 2010 May; 58(4):927-34. PubMed ID: 20012744
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Assessment of humic and fulvic acids in black soils using near-infrared reflectance spectroscopy].
    Fan RQ; Shen Y; Yang XM; Zhang XP; Liang AZ; Jia SX; Chen XW; Wei SC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Oct; 32(10):2674-9. PubMed ID: 23285863
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phenanthrene sorption to sequentially extracted soil humic acids and humins.
    Kang S; Xing B
    Environ Sci Technol; 2005 Jan; 39(1):134-40. PubMed ID: 15667087
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sedimentary humic substances in the northern Adriatic sea (Mediterranean sea).
    Calace N; Cardellicchio N; Petronio BM; Pietrantonio M; Pietroletti M
    Mar Environ Res; 2006 Feb; 61(1):40-58. PubMed ID: 16019060
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Size partitioning and mixing behavior of trace metals and dissolved organic matter in a South China estuary.
    Wang W; Chen M; Guo L; Wang WX
    Sci Total Environ; 2017 Dec; 603-604():434-444. PubMed ID: 28641183
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fractionation and ecological risk of metals in urban river sediments in Zhongshan City, Pearl River Delta.
    Cai J; Cao Y; Tan H; Wang Y; Luo J
    J Environ Monit; 2011 Sep; 13(9):2450-6. PubMed ID: 21761082
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Source apportionment of trace metals in river sediments: A comparison of three methods.
    Chen H; Teng Y; Li J; Wu J; Wang J
    Environ Pollut; 2016 Apr; 211():28-37. PubMed ID: 26736053
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fast quantification of humic substances and organic matter by direct analysis of sediments using DRIFT spectroscopy.
    Tremblay L; Gagné JP
    Anal Chem; 2002 Jul; 74(13):2985-93. PubMed ID: 12141656
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Assessment of heavy metal pollution in surface sediments of rivers in northern area of Haihe River Basin, China].
    Shang LY; Sun RH; Wang ZM; Ji YH; Chen LD
    Huan Jing Ke Xue; 2012 Feb; 33(2):606-11. PubMed ID: 22509604
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Heavy metal contamination of overlying waters and bed sediments of Haihe Basin in China.
    Tang W; Zhao Y; Wang C; Shan B; Cui J
    Ecotoxicol Environ Saf; 2013 Dec; 98():317-23. PubMed ID: 24144997
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rapid and efficient removal of Pb(II) from aqueous solutions using biomass-derived activated carbon with humic acid in-situ modification.
    Guo Z; Zhang J; Kang Y; Liu H
    Ecotoxicol Environ Saf; 2017 Nov; 145():442-448. PubMed ID: 28778043
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China.
    Fang T; Li X; Zhang G
    Ecotoxicol Environ Saf; 2005 Jul; 61(3):420-31. PubMed ID: 15922809
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances.
    Zhao Y; Geng J; Wang X; Gu X; Gao S
    J Colloid Interface Sci; 2011 Sep; 361(1):247-51. PubMed ID: 21664620
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interaction Mechanism between Antibiotics and Humic Acid by UV-Vis Spectrometry.
    Yuan X; Yang S; Fang J; Wang X; Ma H; Wang Z; Wang R; Zhao Y
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30177592
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Temporal variation and regional transfer of heavy metals in the Pearl (Zhujiang) River, China.
    Zhen G; Li Y; Tong Y; Yang L; Zhu Y; Zhang W
    Environ Sci Pollut Res Int; 2016 May; 23(9):8410-20. PubMed ID: 26780062
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Degradation and structure change of humic acids corresponding to water decline in Zoige peatland, Qinghai-Tibet Plateau.
    Guo X; Du W; Wang X; Yang Z
    Sci Total Environ; 2013 Feb; 445-446():231-6. PubMed ID: 23334317
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of surface marine sediments from Ría de Arousa estuary according to extractable humic matter content.
    Moreda-Piñeiro A; Seco-Gesto EM; Bermejo-Barrera A; Bermejo-Barrera P
    Chemosphere; 2006 Jul; 64(5):866-73. PubMed ID: 16581101
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Character of Humic Substances as a Predictor for Goethite Nanoparticle Reactivity and Aggregation.
    Vindedahl AM; Stemig MS; Arnold WA; Penn RL
    Environ Sci Technol; 2016 Feb; 50(3):1200-8. PubMed ID: 26790005
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sorption of pentachlorophenol and phenanthrene by humic acid-coated hematite nanoparticles.
    Xu B; Lian Z; Liu F; Yu Y; He Y; Brookes PC; Xu J
    Environ Pollut; 2019 May; 248():929-937. PubMed ID: 30856508
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparative study for separation of atmospheric humic-like substance (HULIS) by ENVI-18, HLB, XAD-8 and DEAE sorbents: elemental composition, FT-IR, 1H NMR and off-line thermochemolysis with tetramethylammonium hydroxide (TMAH).
    Fan X; Song J; Peng P
    Chemosphere; 2013 Nov; 93(9):1710-9. PubMed ID: 23773442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.