BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21235223)

  • 1. Hydrazine-sensitive thiol protecting group for peptide and protein chemistry.
    Shen F; Zhang ZP; Li JB; Lin Y; Liu L
    Org Lett; 2011 Feb; 13(4):568-71. PubMed ID: 21235223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-resin conversion of Cys(Acm)-containing peptides to their corresponding Cys(Scm) congeners.
    Mullen DG; Weigel B; Barany G; Distefano MD
    J Pept Sci; 2010 May; 16(5):219-22. PubMed ID: 20401923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of an aryl hydrazine linker prevents beta-elimination side products in the SPPS of C-terminal cysteine peptides.
    Ni S; Zhang H; Huang W; Zhou J; Qian H; Chen W
    J Pept Sci; 2010 Jun; 16(6):309-13. PubMed ID: 20474043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ninhydrin as a reversible protecting group of amino-terminal cysteine.
    Pool CT; Boyd JG; Tam JP
    J Pept Res; 2004 Mar; 63(3):223-34. PubMed ID: 15049834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A photolabile linker for the solid-phase synthesis of peptide hydrazides and heterocycles.
    Qvortrup K; Komnatnyy VV; Nielsen TE
    Org Lett; 2014 Sep; 16(18):4782-5. PubMed ID: 25166929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4-Methoxybenzyloxymethyl group, a racemization-resistant protecting group for cysteine in Fmoc solid phase peptide synthesis.
    Hibino H; Nishiuchi Y
    Org Lett; 2012 Apr; 14(7):1926-9. PubMed ID: 22452360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-methyl-phenacyloxycarbamidomethyl (Pocam) group: a novel thiol protecting group for solid-phase peptide synthesis and peptide condensation reactions.
    Katayama H; Nakahara Y; Hojo H
    Org Biomol Chem; 2011 Jun; 9(12):4653-61. PubMed ID: 21537511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Side-chain anchoring strategy for solid-phase synthesis of peptide acids with C-terminal cysteine.
    Barany G; Han Y; Hargittai B; Liu RQ; Varkey JT
    Biopolymers; 2003; 71(6):652-66. PubMed ID: 14991675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eco-friendly combination of the immobilized PGA enzyme and the S-Phacm protecting group for the synthesis of Cys-containing peptides.
    Góngora-Benítez M; Basso A; Bruckdorfer T; Royo M; Tulla-Puche J; Albericio F
    Chemistry; 2012 Dec; 18(50):16166-76. PubMed ID: 23081847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dde resin based strategy for inverse solid-phase synthesis of amino terminated peptides, peptide mimetics and protected peptide intermediates.
    Rai A; Gutheil WG
    J Pept Sci; 2005 Feb; 11(2):69-73. PubMed ID: 15635629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phenacyl group as an efficient thiol protecting group in a peptide condensation reaction by the thioester method.
    Katayama H; Hojo H
    Org Biomol Chem; 2013 Jul; 11(26):4405-13. PubMed ID: 23715434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trimethoxyphenylthio as a highly labile replacement for tert-butylthio cysteine protection in Fmoc solid phase synthesis.
    Postma TM; Giraud M; Albericio F
    Org Lett; 2012 Nov; 14(21):5468-71. PubMed ID: 23075145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol-assisted one-pot synthesis of peptide/protein C-terminal thioacids from peptide/protein hydrazides at neutral conditions.
    Chen C; Huang Y; Xu L; Zheng Y; Xu H; Guo Q; Tian C; Li Y; Shi J
    Org Biomol Chem; 2014 Dec; 12(46):9413-8. PubMed ID: 25321612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized alpha/beta motifs.
    Dassanayake RS; Silva Gunawardene YI; Tobe SS
    Peptides; 2007 Jan; 28(1):62-75. PubMed ID: 17161505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and use of cysteine orthoesters for solid-supported synthesis of peptides.
    Huang Z; Derksen DJ; Vederas JC
    Org Lett; 2010 May; 12(10):2282-5. PubMed ID: 20405951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis.
    McCurdy SN
    Pept Res; 1989; 2(1):147-52. PubMed ID: 2577698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiopalmitoylated peptides from the peripheral nervous system myelin p0 protein: synthesis, characterization, and neuritogenic properties.
    Beaino W; Trifilieff E
    Bioconjug Chem; 2010 Aug; 21(8):1439-47. PubMed ID: 20715848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-phase synthesis of C-terminal modified peptides.
    Alsina J; Albericio F
    Biopolymers; 2003; 71(4):454-77. PubMed ID: 14517898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards biomolecular assembly employing extended native chemical ligation in combination with thioester synthesis using an N-->S acyl shift.
    Ackrill T; Anderson DW; Macmillan D
    Biopolymers; 2010; 94(4):495-503. PubMed ID: 20593460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.