These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21235265)

  • 1. Magnetically driven agitation in a tube mixer affords clog-resistant fast mixing independent of linear velocity.
    Dolman SJ; Nyrop JL; Kuethe JT
    J Org Chem; 2011 Feb; 76(3):993-6. PubMed ID: 21235265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel.
    Lin YC; Chung YC; Wu CY
    Biomed Microdevices; 2007 Apr; 9(2):215-21. PubMed ID: 17165126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method.
    Kawasaki S; Sue K; Ookawara R; Wakashima Y; Suzuki A
    J Oleo Sci; 2010; 59(10):557-62. PubMed ID: 20877149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the staggered herringbone mixer with a simple analytical model.
    Stroock AD; McGraw GJ
    Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):971-86. PubMed ID: 15306479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid circular microfluidic mixer utilizing unbalanced driving force.
    Lin CH; Tsai CH; Pan CW; Fu LM
    Biomed Microdevices; 2007 Feb; 9(1):43-50. PubMed ID: 17106640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of a microfluidic mixer for studying protein folding kinetics.
    Hertzog DE; Ivorra B; Mohammadi B; Bakajin O; Santiago JG
    Anal Chem; 2006 Jul; 78(13):4299-306. PubMed ID: 16808436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics.
    Gambin Y; Simonnet C; VanDelinder V; Deniz A; Groisman A
    Lab Chip; 2010 Mar; 10(5):598-609. PubMed ID: 20162235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmotic mixing in microchannels.
    Glasgow I; Batton J; Aubry N
    Lab Chip; 2004 Dec; 4(6):558-62. PubMed ID: 15570365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation and PEPT measurements of a 3D conical helical-blade mixer: a high potential solids mixer for solid-state fermentation.
    Schutyser MA; Briels WJ; Rinzema A; Boom RM
    Biotechnol Bioeng; 2003 Oct; 84(1):29-39. PubMed ID: 12910540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sandwich mixer-reactor: influence of the diffusion coefficient and flow rate ratios.
    Abonnenc M; Josserand J; Girault HH
    Lab Chip; 2009 Feb; 9(3):440-8. PubMed ID: 19156294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid mixing using two-phase hydraulic focusing in microchannels.
    Wu Z; Nguyen NT
    Biomed Microdevices; 2005 Mar; 7(1):13-20. PubMed ID: 15834516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of turbulent tangential micro-mixers that mix liquids on the nanosecond time scale.
    Mitic S; van Nieuwkasteele JW; van den Berg A; de Vries S
    Anal Biochem; 2015 Jan; 469():19-26. PubMed ID: 25447461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and evaluation of a Dean vortex-based micromixer.
    Howell PB; Mott DR; Golden JP; Ligler FS
    Lab Chip; 2004 Dec; 4(6):663-9. PubMed ID: 15570382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic mixer with grooves placed on the top and bottom of the channel.
    Howell PB; Mott DR; Fertig S; Kaplan CR; Golden JP; Oran ES; Ligler FS
    Lab Chip; 2005 May; 5(5):524-30. PubMed ID: 15856089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model based design of a microfluidic mixer driven by induced charge electroosmosis.
    Harnett CK; Templeton J; Dunphy-Guzman KA; Senousy YM; Kanouff MP
    Lab Chip; 2008 Apr; 8(4):565-72. PubMed ID: 18369511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrowetting-based droplet mixers for microfluidic systems.
    Paik P; Pamula VK; Pollack MG; Fair RB
    Lab Chip; 2003 Feb; 3(1):28-33. PubMed ID: 15100802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and simulation of the micromixer with chaotic advection in twisted microchannels.
    Jen CP; Wu CY; Lin YC; Wu CY
    Lab Chip; 2003 May; 3(2):77-81. PubMed ID: 15100786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
    Ng WY; Goh S; Lam YC; Yang C; Rodríguez I
    Lab Chip; 2009 Mar; 9(6):802-9. PubMed ID: 19255662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvements in mixing time and mixing uniformity in devices designed for studies of protein folding kinetics.
    Yao S; Bakajin O
    Anal Chem; 2007 Aug; 79(15):5753-9. PubMed ID: 17583912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.