These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 21235470)

  • 1. Direct compression high functionality excipient using coprocessing technique: a brief review.
    Mirani AG; Patankar SP; Borole VS; Pawar AS; Kadam VJ
    Curr Drug Deliv; 2011 Jul; 8(4):426-35. PubMed ID: 21235470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional coprocessed excipients for improved tabletting performance.
    Saha S; Shahiwala AF
    Expert Opin Drug Deliv; 2009 Feb; 6(2):197-208. PubMed ID: 19239391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Engineering of Excipients for Direct Compression: Understanding the Role of Material Properties.
    Mangal S; Meiser F; Morton D; Larson I
    Curr Pharm Des; 2015; 21(40):5877-89. PubMed ID: 26446468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance.
    Rojas J; Buckner I; Kumar V
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1159-70. PubMed ID: 22966909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow, packing and compaction properties of novel coprocessed multifunctional directly compressible excipients prepared from tapioca starch and mannitol.
    Adeoye O; Alebiowu G
    Pharm Dev Technol; 2014 Dec; 19(8):901-10. PubMed ID: 24089696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved properties of fine active pharmaceutical ingredient powder blends and tablets at high drug loading via dry particle coating.
    Kunnath K; Huang Z; Chen L; Zheng K; Davé R
    Int J Pharm; 2018 May; 543(1-2):288-299. PubMed ID: 29625168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite particles based on particle engineering for direct compaction.
    Li Z; Lin X; Shen L; Hong Y; Feng Y
    Int J Pharm; 2017 Mar; 519(1-2):272-286. PubMed ID: 28109898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression.
    Chaheen M; Sanchez-Ballester NM; Bataille B; Yassine A; Belamie E; Sharkawi T
    J Pharm Sci; 2018 Aug; 107(8):2152-2159. PubMed ID: 29698724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the API properties on the ODTs manufacturing from co-processed excipient systems.
    Krupa A; Jachowicz R; Pędzich Z; Wodnicka K
    AAPS PharmSciTech; 2012 Dec; 13(4):1120-9. PubMed ID: 22941425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression.
    Domínguez-Robles J; Stewart SA; Rendl A; González Z; Donnelly RF; Larrañeta E
    Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31466387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Feeding and Blending Demonstration with Co-Processed Drug Substance.
    Erdemir D; Gawel J; Yohannes B; Yates P; Tang D; Ha K; Breza B; DiMaso E; Abebe A; Zombek J
    J Pharm Sci; 2023 Aug; 112(8):2046-2056. PubMed ID: 36462708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Demand Manufacturing of Direct Compressible Tablets: Can Formulation Be Simplified?
    Azad MA; Osorio JG; Wang A; Klee DM; Eccles ME; Grela E; Sloan R; Hammersmith G; Rapp K; Brancazio D; Myerson AS
    Pharm Res; 2019 Oct; 36(12):167. PubMed ID: 31650274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material and Compression Properties of Cedrela odorata Gum Co-Processed with Plantain Starch and Microcrystalline Cellulose.
    Adetunji OA; Odeniyi MA
    Polim Med; 2016; 46(1):35-43. PubMed ID: 28397417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery.
    Villanova JC; Ayres E; Carvalho SM; Patrício PS; Pereira FV; Oréfice RL
    Eur J Pharm Sci; 2011 Mar; 42(4):406-15. PubMed ID: 21241802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-step Coprocessing of Cohesive Powder via Mechanical Dry Coating for Direct Tablet Compression.
    Qu L; Stewart PJ; Hapgood KP; Lakio S; Morton DAV; Zhou QT
    J Pharm Sci; 2017 Jan; 106(1):159-167. PubMed ID: 27665128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.
    Chattoraj S; Sun CC
    J Pharm Sci; 2018 Apr; 107(4):968-974. PubMed ID: 29247737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of a novel co-processed excipient of chitin and crystalline mannitol.
    Daraghmeh N; Rashid I; Al Omari MM; Leharne SA; Chowdhry BZ; Badwan A
    AAPS PharmSciTech; 2010 Dec; 11(4):1558-71. PubMed ID: 21052880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug.
    Alyami H; Dahmash E; Bowen J; Mohammed AR
    PLoS One; 2017; 12(6):e0178772. PubMed ID: 28609454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative evaluation of the use of dry binders in a physical mixture or as a coprocessed dry binder in matrix tablets with extended drug release.
    Mužíková J; Komersová A; Lochař V; Vildová L; Vošoustová B; Bartoš M
    Acta Pharm; 2018 Sep; 68(3):295-311. PubMed ID: 31259696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Optimization of a Starch-Based Co-processed Excipient for Direct Compression Using Mixture Design.
    Apeji YE; Oyi AR; Isah AB; Allagh TS; Modi SR; Bansal AK
    AAPS PharmSciTech; 2018 Feb; 19(2):866-880. PubMed ID: 29038987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.