BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21235485)

  • 21. On the thermal stability of the two dimeric forms of ribonuclease A.
    Bucci E; Vitagliano L; Barone R; Sorrentino S; D'Alessio G; Graziano G
    Biophys Chem; 2005 Jul; 116(2):89-95. PubMed ID: 15950820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Propensity for C-terminal domain swapping correlates with increased regional flexibility in the C-terminus of RNase A.
    Miller KH; Marqusee S
    Protein Sci; 2011 Oct; 20(10):1735-44. PubMed ID: 21805524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation, structure, and dissociation of the ribonuclease S three-dimensional domain-swapped dimer.
    López-Alonso JP; Bruix M; Font J; Ribó M; Vilanova M; Rico M; Gotte G; Libonati M; González C; Laurents DV
    J Biol Chem; 2006 Apr; 281(14):9400-6. PubMed ID: 16415350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange.
    Houry WA; Scheraga HA
    Biochemistry; 1996 Sep; 35(36):11734-46. PubMed ID: 8794754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elucidation of the ribonuclease A aggregation process mediated by 3D domain swapping: a computational approach reveals possible new multimeric structures.
    Cozza G; Moro S; Gotte G
    Biopolymers; 2008 Jan; 89(1):26-39. PubMed ID: 17763469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increase of RNase a N-terminus polarity or C-terminus apolarity changes the two domains' propensity to swap and form the two dimeric conformers of the protein.
    Gotte G; Donadelli M; Laurents DV; Vottariello F; Morbio M; Libonati M
    Biochemistry; 2006 Sep; 45(36):10795-806. PubMed ID: 16953565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crowding agents and osmolytes provide insight into the formation and dissociation of RNase A oligomers.
    Ercole C; López-Alonso JP; Font J; Ribó M; Vilanova M; Picone D; Laurents DV
    Arch Biochem Biophys; 2011 Feb; 506(2):123-9. PubMed ID: 21094126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Folding and unfolding kinetics of the proline-to-alanine mutants of bovine pancreatic ribonuclease A.
    Dodge RW; Scheraga HA
    Biochemistry; 1996 Feb; 35(5):1548-59. PubMed ID: 8634286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.
    Reinstädler D; Fabian H; Backmann J; Naumann D
    Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Refolding of reduced/denatured RNase A the hydrophobic liquid-solid interface].
    Bi J; Bai Q; Wang J; Wang L
    Se Pu; 2010 Aug; 28(8):786-9. PubMed ID: 21261048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The structure of an engineered domain-swapped ribonuclease dimer and its implications for the evolution of proteins toward oligomerization.
    Canals A; Pous J; Guasch A; Benito A; Ribó M; Vilanova M; Coll M
    Structure; 2001 Oct; 9(10):967-76. PubMed ID: 11591351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oligomerization of ribonuclease A under reducing conditions.
    Gotte G; Libonati M
    Biochim Biophys Acta; 2008 Apr; 1784(4):638-50. PubMed ID: 18261475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oligomerization of ribonuclease A: two novel three-dimensional domain-swapped tetramers.
    Gotte G; Libonati M
    J Biol Chem; 2004 Aug; 279(35):36670-9. PubMed ID: 15218036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycosylation and specific deamidation of ribonuclease B affect the formation of three-dimensional domain-swapped oligomers.
    Gotte G; Libonati M; Laurents DV
    J Biol Chem; 2003 Nov; 278(47):46241-51. PubMed ID: 12966091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human RNase 1 can extensively oligomerize through 3D domain swapping thanks to the crucial contribution of its C-terminus.
    Noro I; Bettin I; Fasoli S; Smania M; Lunardi L; Giannini M; Andreoni L; Montioli R; Gotte G
    Int J Biol Macromol; 2023 Sep; 249():126110. PubMed ID: 37536419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new mutant of bovine seminal ribonuclease with a reversed swapping propensity.
    Ercole C; Spadaccini R; Alfano C; Tancredi T; Picone D
    Biochemistry; 2007 Feb; 46(8):2227-32. PubMed ID: 17269658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D domain swapping: a mechanism for oligomer assembly.
    Bennett MJ; Schlunegger MP; Eisenberg D
    Protein Sci; 1995 Dec; 4(12):2455-68. PubMed ID: 8580836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic properties of the N-terminal swapped dimer of ribonuclease A.
    Merlino A; Vitagliano L; Ceruso MA; Mazzarella L
    Biophys J; 2004 Apr; 86(4):2383-91. PubMed ID: 15041676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbodiimide EDC induces cross-links that stabilize RNase A C-dimer against dissociation: EDC adducts can affect protein net charge, conformation, and activity.
    López-Alonso JP; Diez-García F; Font J; Ribó M; Vilanova M; Scholtz JM; González C; Vottariello F; Gotte G; Libonati M; Laurents DV
    Bioconjug Chem; 2009 Aug; 20(8):1459-73. PubMed ID: 19606852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The multiple forms of bovine seminal ribonuclease: structure and stability of a C-terminal swapped dimer.
    Sica F; Pica A; Merlino A; Russo Krauss I; Ercole C; Picone D
    FEBS Lett; 2013 Nov; 587(23):3755-62. PubMed ID: 24140346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.