These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21236298)

  • 1. Statistical technique for analysing functional connectivity of multiple spike trains.
    Masud MS; Borisyuk R
    J Neurosci Methods; 2011 Mar; 196(1):201-19. PubMed ID: 21236298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced correlation grid: Analysis and visualisation of functional connectivity among multiple spike trains.
    Masud MS; Borisyuk R; Stuart L
    J Neurosci Methods; 2017 Jul; 286():78-101. PubMed ID: 28506880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing the functional connectivity of multiple spike trains using Hawkes models.
    Lambert RC; Tuleau-Malot C; Bessaih T; Rivoirard V; Bouret Y; Leresche N; Reynaud-Bouret P
    J Neurosci Methods; 2018 Mar; 297():9-21. PubMed ID: 29294310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional connectivity among spike trains in neural assemblies during rat working memory task.
    Xie J; Bai W; Liu T; Tian X
    Behav Brain Res; 2014 Nov; 274():248-57. PubMed ID: 25150041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total spiking probability edges: A cross-correlation based method for effective connectivity estimation of cortical spiking neurons.
    De Blasi S; Ciba M; Bahmer A; Thielemann C
    J Neurosci Methods; 2019 Jan; 312():169-181. PubMed ID: 30500352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing neuronal circuitry from parallel spike trains.
    Kobayashi R; Kurita S; Kurth A; Kitano K; Mizuseki K; Diesmann M; Richmond BJ; Shinomoto S
    Nat Commun; 2019 Oct; 10(1):4468. PubMed ID: 31578320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting dependencies between spike trains of pairs of neurons through copulas.
    Sacerdote L; Tamborrino M; Zucca C
    Brain Res; 2012 Jan; 1434():243-56. PubMed ID: 21981802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference of network connectivity from temporally binned spike trains.
    Vareberg AD; Bok I; Eizadi J; Ren X; Hai A
    J Neurosci Methods; 2024 Apr; 404():110073. PubMed ID: 38309313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing multiple spike trains with nonparametric Granger causality.
    Nedungadi AG; Rangarajan G; Jain N; Ding M
    J Comput Neurosci; 2009 Aug; 27(1):55-64. PubMed ID: 19137420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data.
    Shimazaki H; Amari S; Brown EN; Grün S
    PLoS Comput Biol; 2012; 8(3):e1002385. PubMed ID: 22412358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A discrete time neural network model with spiking neurons: II: dynamics with noise.
    Cessac B
    J Math Biol; 2011 Jun; 62(6):863-900. PubMed ID: 20658138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust point-process Granger causality analysis in presence of exogenous temporal modulations and trial-by-trial variability in spike trains.
    Casile A; Faghih RT; Brown EN
    PLoS Comput Biol; 2021 Jan; 17(1):e1007675. PubMed ID: 33493162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks.
    Cavallari S; Panzeri S; Mazzoni A
    Front Neural Circuits; 2014; 8():12. PubMed ID: 24634645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting joint pausiness in parallel spike trains.
    Gärtner M; Duvarci S; Roeper J; Schneider G
    J Neurosci Methods; 2017 Jun; 285():69-81. PubMed ID: 28495371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attractor reliability reveals deterministic structure in neuronal spike trains.
    Tiesinga PH; Fellous JM; Sejnowski TJ
    Neural Comput; 2002 Jul; 14(7):1629-50. PubMed ID: 12079549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-train communities: finding groups of similar spike trains.
    Humphries MD
    J Neurosci; 2011 Feb; 31(6):2321-36. PubMed ID: 21307268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble learning and ground-truth validation of synaptic connectivity inferred from spike trains.
    Donner C; Bartram J; Hornauer P; Kim T; Roqueiro D; Hierlemann A; Obozinski G; Schröter M
    PLoS Comput Biol; 2024 Apr; 20(4):e1011964. PubMed ID: 38683881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representing spike trains using constant sampling intervals.
    Hirata Y; Aihara K
    J Neurosci Methods; 2009 Oct; 183(2):277-86. PubMed ID: 19583980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating spike trains with specified correlation coefficients.
    Macke JH; Berens P; Ecker AS; Tolias AS; Bethge M
    Neural Comput; 2009 Feb; 21(2):397-423. PubMed ID: 19196233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.