These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 21236334)

  • 1. Redox signaling in cardiac myocytes.
    Santos CX; Anilkumar N; Zhang M; Brewer AC; Shah AM
    Free Radic Biol Med; 2011 Apr; 50(7):777-93. PubMed ID: 21236334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox signaling in cardiac physiology and pathology.
    Burgoyne JR; Mongue-Din H; Eaton P; Shah AM
    Circ Res; 2012 Sep; 111(8):1091-106. PubMed ID: 23023511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH oxidases and cardiac remodelling.
    Nabeebaccus A; Zhang M; Shah AM
    Heart Fail Rev; 2011 Jan; 16(1):5-12. PubMed ID: 20658317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium Signaling and Reactive Oxygen Species in Mitochondria.
    Bertero E; Maack C
    Circ Res; 2018 May; 122(10):1460-1478. PubMed ID: 29748369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress.
    Schulz E; Wenzel P; Münzel T; Daiber A
    Antioxid Redox Signal; 2014 Jan; 20(2):308-24. PubMed ID: 22657349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox signaling in heart failure and therapeutic implications.
    Weissman D; Maack C
    Free Radic Biol Med; 2021 Aug; 171():345-364. PubMed ID: 34019933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca
    Zhao GJ; Zhao CL; Ouyang S; Deng KQ; Zhu L; Montezano AC; Zhang C; Hu F; Zhu XY; Tian S; Liu X; Ji YX; Zhang P; Zhang XJ; She ZG; Touyz RM; Li H
    Hypertension; 2020 Sep; 76(3):827-838. PubMed ID: 32683902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulation of cardiac intermediary metabolism by NADPH oxidases.
    Nabeebaccus AA; Reumiller CM; Shen J; Zoccarato A; Santos CXC; Shah AM
    Cardiovasc Res; 2023 Jan; 118(17):3305-3319. PubMed ID: 35325070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.
    Kuroda J; Ago T; Matsushima S; Zhai P; Schneider MD; Sadoshima J
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15565-70. PubMed ID: 20713697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria in Structural and Functional Cardiac Remodeling.
    Torrealba N; Aranguiz P; Alonso C; Rothermel BA; Lavandero S
    Adv Exp Med Biol; 2017; 982():277-306. PubMed ID: 28551793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes.
    Tocchetti CG; Stanley BA; Sivakumaran V; Bedja D; O'Rourke B; Paolocci N; Cortassa S; Aon MA
    Clin Sci (Lond); 2015 Oct; 129(7):561-74. PubMed ID: 26186741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial reactive oxygen species production and elimination.
    Nickel A; Kohlhaas M; Maack C
    J Mol Cell Cardiol; 2014 Aug; 73():26-33. PubMed ID: 24657720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Stress.
    Sies H; Berndt C; Jones DP
    Annu Rev Biochem; 2017 Jun; 86():715-748. PubMed ID: 28441057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of NADPH oxidases in skeletal muscle.
    Ferreira LF; Laitano O
    Free Radic Biol Med; 2016 Sep; 98():18-28. PubMed ID: 27184955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes.
    Sabri A; Hughie HH; Lucchesi PA
    Antioxid Redox Signal; 2003 Dec; 5(6):731-40. PubMed ID: 14588146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen sensing and redox signaling: the role of thioredoxin in embryonic development and cardiac diseases.
    Kobayashi-Miura M; Shioji K; Hoshino Y; Masutani H; Nakamura H; Yodoi J
    Am J Physiol Heart Circ Physiol; 2007 May; 292(5):H2040-50. PubMed ID: 17293486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox balance in the aged endothelium.
    Czypiorski P; Rabanter LL; Altschmied J; Haendeler J
    Z Gerontol Geriatr; 2013 Oct; 46(7):635-8. PubMed ID: 23958997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox regulation of Nox proteins.
    Pendyala S; Natarajan V
    Respir Physiol Neurobiol; 2010 Dec; 174(3):265-71. PubMed ID: 20883826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox regulation of cardiac hypertrophy.
    Sag CM; Santos CX; Shah AM
    J Mol Cell Cardiol; 2014 Aug; 73():103-11. PubMed ID: 24530760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.