These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 21236354)
1. Curcumin-induced inhibition of proteasomal activity, enhanced HSP accumulation and the acquisition of thermotolerance in Xenopus laevis A6 cells. Khan S; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2011 Apr; 158(4):566-76. PubMed ID: 21236354 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous exposure of Xenopus A6 kidney epithelial cells to concurrent mild sodium arsenite and heat stress results in enhanced hsp30 and hsp70 gene expression and the acquisition of thermotolerance. Young JT; Gauley J; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2009 Aug; 153(4):417-24. PubMed ID: 19358893 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells. Voyer J; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2008 Oct; 151(2):253-61. PubMed ID: 18675372 [TBL] [Abstract][Full Text] [Related]
4. Examination of cadmium-induced expression of the small heat shock protein gene, hsp30, in Xenopus laevis A6 kidney epithelial cells. Woolfson JP; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2009 Jan; 152(1):91-9. PubMed ID: 18834946 [TBL] [Abstract][Full Text] [Related]
5. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells. Manwell LA; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):521-30. PubMed ID: 17681842 [TBL] [Abstract][Full Text] [Related]
6. Withaferin A induces proteasome inhibition, endoplasmic reticulum stress, the heat shock response and acquisition of thermotolerance. Khan S; Rammeloo AW; Heikkila JJ PLoS One; 2012; 7(11):e50547. PubMed ID: 23226310 [TBL] [Abstract][Full Text] [Related]
7. Celastrol can inhibit proteasome activity and upregulate the expression of heat shock protein genes, hsp30 and hsp70, in Xenopus laevis A6 cells. Walcott SE; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2010 Jun; 156(2):285-93. PubMed ID: 20188206 [TBL] [Abstract][Full Text] [Related]
8. Proteasome inhibition induces hsp30 and hsp70 gene expression as well as the acquisition of thermotolerance in Xenopus laevis A6 cells. Young JT; Heikkila JJ Cell Stress Chaperones; 2010 May; 15(3):323-34. PubMed ID: 19838833 [TBL] [Abstract][Full Text] [Related]
9. Intracellular localization of the heat shock protein, HSP110, in Xenopus laevis A6 kidney epithelial cells. Gauley J; Young JT; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2008 Sep; 151(1):133-8. PubMed ID: 18606238 [TBL] [Abstract][Full Text] [Related]
10. Effect of herbimycin A on hsp30 and hsp70 heat shock protein gene expression in Xenopus cultured cells. Briant D; Ohan N; Heikkila JJ Biochem Cell Biol; 1997; 75(6):777-82. PubMed ID: 9599667 [TBL] [Abstract][Full Text] [Related]
11. Heat shock-induced acquisition of thermotolerance at the levels of cell survival and translation in Xenopus A6 kidney epithelial cells. Phang D; Joyce EM; Heikkila JJ Biochem Cell Biol; 1999; 77(2):141-51. PubMed ID: 10438149 [TBL] [Abstract][Full Text] [Related]
12. Sodium arsenite and cadmium chloride induction of proteasomal inhibition and HSP accumulation in Xenopus laevis A6 kidney epithelial cells. Brunt JJ; Khan S; Heikkila JJ Comp Biochem Physiol C Toxicol Pharmacol; 2012 Mar; 155(2):307-17. PubMed ID: 21983225 [TBL] [Abstract][Full Text] [Related]
13. Enhanced HSP30 and HSP70 accumulation in Xenopus cells subjected to concurrent sodium arsenite and cadmium chloride stress. Khamis I; Heikkila JJ Comp Biochem Physiol C Toxicol Pharmacol; 2013 Sep; 158(3):165-72. PubMed ID: 23919948 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen peroxide induces heat shock protein and proto-oncogene mRNA accumulation in Xenopus laevis A6 kidney epithelial cells. Muller M; Gauley J; Heikkila JJ Can J Physiol Pharmacol; 2004 Jul; 82(7):523-9. PubMed ID: 15389300 [TBL] [Abstract][Full Text] [Related]
15. Distinct patterns of HSP30 and HSP70 degradation in Xenopus laevis A6 cells recovering from thermal stress. Khan S; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2014 Feb; 168():1-10. PubMed ID: 24231468 [TBL] [Abstract][Full Text] [Related]
16. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. Zhang Y; Huang L; Zhang J; Moskophidis D; Mivechi NF J Cell Biochem; 2002; 86(2):376-93. PubMed ID: 12112007 [TBL] [Abstract][Full Text] [Related]
17. Intracellular localization of Xenopus small heat shock protein, hsp30, in A6 kidney epithelial cells. Gellalchew M; Heikkila JJ Cell Biol Int; 2005 Mar; 29(3):221-7. PubMed ID: 15893480 [TBL] [Abstract][Full Text] [Related]
18. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes. Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264 [TBL] [Abstract][Full Text] [Related]
19. Spatial pattern of constitutive and heat shock-induced expression of the small heat shock protein gene family, Hsp30, in Xenopus laevis tailbud embryos. Lang L; Miskovic D; Fernando P; Heikkila JJ Dev Genet; 1999; 25(4):365-74. PubMed ID: 10570468 [TBL] [Abstract][Full Text] [Related]
20. Identification of members of the HSP30 small heat shock protein family and characterization of their developmental regulation in heat-shocked Xenopus laevis embryos. Tam Y; Heikkila JJ Dev Genet; 1995; 17(4):331-9. PubMed ID: 8641051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]