These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 21236410)
1. Hemispherical focal macular photopic negative response and macular inner retinal thickness in open-angle glaucoma. Nakamura H; Hangai M; Mori S; Hirose F; Yoshimura N Am J Ophthalmol; 2011 Mar; 151(3):494-506.e1. PubMed ID: 21236410 [TBL] [Abstract][Full Text] [Related]
2. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Cho JW; Sung KR; Lee S; Yun SC; Kang SY; Choi J; Na JH; Lee Y; Kook MS Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6401-7. PubMed ID: 20631238 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. Nakatani Y; Higashide T; Ohkubo S; Takeda H; Sugiyama K J Glaucoma; 2011; 20(4):252-9. PubMed ID: 20520570 [TBL] [Abstract][Full Text] [Related]
4. Correlation between photopic negative response of focal electroretinograms and local loss of retinal neurons in glaucoma. Tamada K; Machida S; Oikawa T; Miyamoto H; Nishimura T; Kurosaka D Curr Eye Res; 2010 Feb; 35(2):155-64. PubMed ID: 20136426 [TBL] [Abstract][Full Text] [Related]
5. Structure-function relationships in normal and glaucomatous eyes determined by time- and spectral-domain optical coherence tomography. Lee JR; Jeoung JW; Choi J; Choi JY; Park KH; Kim YD Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6424-30. PubMed ID: 20592233 [TBL] [Abstract][Full Text] [Related]
6. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Leung CK; Chan WM; Yung WH; Ng AC; Woo J; Tsang MK; Tse RK Ophthalmology; 2005 Mar; 112(3):391-400. PubMed ID: 15745764 [TBL] [Abstract][Full Text] [Related]
7. Diagnostic power of optic disc morphology, peripapillary retinal nerve fiber layer thickness, and macular inner retinal layer thickness in glaucoma diagnosis with fourier-domain optical coherence tomography. Huang JY; Pekmezci M; Mesiwala N; Kao A; Lin S J Glaucoma; 2011 Feb; 20(2):87-94. PubMed ID: 20577117 [TBL] [Abstract][Full Text] [Related]
8. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Seong M; Sung KR; Choi EH; Kang SY; Cho JW; Um TW; Kim YJ; Park SB; Hong HE; Kook MS Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1446-52. PubMed ID: 19834029 [TBL] [Abstract][Full Text] [Related]
9. Regional variations in correlation between photopic negative response of focal electoretinograms and ganglion cell complex in glaucoma. Machida S; Kaneko M; Kurosaka D Curr Eye Res; 2015 Apr; 40(4):439-49. PubMed ID: 24871085 [TBL] [Abstract][Full Text] [Related]
10. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma. Boland MV; Zhang L; Broman AT; Jampel HD; Quigley HA Ophthalmology; 2008 Feb; 115(2):239-245.e2. PubMed ID: 18082888 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography. Sakamoto A; Hangai M; Nukada M; Nakanishi H; Mori S; Kotera Y; Inoue R; Yoshimura N Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5062-70. PubMed ID: 20463326 [TBL] [Abstract][Full Text] [Related]
12. Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. North RV; Jones AL; Drasdo N; Wild JM; Morgan JE Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1216-22. PubMed ID: 19850843 [TBL] [Abstract][Full Text] [Related]
14. Correlation between macular thickness and glaucomatous visual fields. Boling W; WuDunn D; Cantor LB; Hoop J; James M; Nukala V J Glaucoma; 2012; 21(8):505-9. PubMed ID: 22104726 [TBL] [Abstract][Full Text] [Related]
15. Acute primary angle closure attack does not cause an increased cup-to-disc ratio. Chew SS; Vasudevan S; Patel HY; Gurria LU; Kerr NM; Gamble G; Crowston JG; Danesh-Meyer HV Ophthalmology; 2011 Feb; 118(2):254-9. PubMed ID: 20884056 [TBL] [Abstract][Full Text] [Related]
16. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Sihota R; Sony P; Gupta V; Dada T; Singh R Invest Ophthalmol Vis Sci; 2006 May; 47(5):2006-10. PubMed ID: 16639009 [TBL] [Abstract][Full Text] [Related]
17. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry. Aptel F; Sayous R; Fortoul V; Beccat S; Denis P Am J Ophthalmol; 2010 Dec; 150(6):825-33. PubMed ID: 20851372 [TBL] [Abstract][Full Text] [Related]
18. Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Machida S; Gotoh Y; Toba Y; Ohtaki A; Kaneko M; Kurosaka D Invest Ophthalmol Vis Sci; 2008 May; 49(5):2201-7. PubMed ID: 18436853 [TBL] [Abstract][Full Text] [Related]
19. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Leung CK; Cheung CY; Weinreb RN; Qiu Q; Liu S; Li H; Xu G; Fan N; Huang L; Pang CP; Lam DS Ophthalmology; 2009 Jul; 116(7):1257-63, 1263.e1-2. PubMed ID: 19464061 [TBL] [Abstract][Full Text] [Related]
20. Potential of stratus optical coherence tomography for detecting early glaucoma in perimetrically normal eyes of open-angle glaucoma patients with unilateral visual field loss. Zhang Y; Wu LL; Yang YF J Glaucoma; 2010 Jan; 19(1):61-5. PubMed ID: 20075675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]