BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21237309)

  • 1. Tracking diffusion of conditioning water in single wheat kernels of different hardnesses by near infrared hyperspectral imaging.
    Manley M; du Toit G; Geladi P
    Anal Chim Acta; 2011 Feb; 686(1-2):64-75. PubMed ID: 21237309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis.
    Williams P; Geladi P; Fox G; Manley M
    Anal Chim Acta; 2009 Oct; 653(2):121-30. PubMed ID: 19808104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) kernels.
    Manley M; Williams P; Nilsson D; Geladi P
    J Agric Food Chem; 2009 Oct; 57(19):8761-9. PubMed ID: 19728712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of grain topography on near infrared hyperspectral images.
    Manley M; McGoverin CM; Engelbrecht P; Geladi P
    Talanta; 2012 Jan; 89():223-30. PubMed ID: 22284484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth characteristics of three Fusarium species evaluated by near-infrared hyperspectral imaging and multivariate image analysis.
    Williams PJ; Geladi P; Britz TJ; Manley M
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):803-13. PubMed ID: 22961391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of oat and groat kernels using NIR hyperspectral imaging.
    Serranti S; Cesare D; Marini F; Bonifazi G
    Talanta; 2013 Jan; 103():276-84. PubMed ID: 23200388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of non-viable whole barley, wheat and sorghum grains using near-infrared hyperspectral data and chemometrics.
    McGoverin CM; Engelbrecht P; Geladi P; Manley M
    Anal Bioanal Chem; 2011 Oct; 401(7):2283-9. PubMed ID: 21842198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Starch waxiness in hexaploid wheat (Triticum aestivum L.) by NIR reflectance spectroscopy.
    Delwiche SR; Graybosch RA; St Amand P; Bai G
    J Agric Food Chem; 2011 Apr; 59(8):4002-8. PubMed ID: 21401107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Prediction of protein content of intact wheat seeds with near infrared reflectance spectroscopy (NIRS)].
    Wang WD; Gu YH; Qin GY; Huo YP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):697-701. PubMed ID: 17608178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Study the Residues of Different Concentrations of Omethoate on Wheat Grain Surface.
    Zhang L; Rao Z; Ji H
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the robust NIR calibration models for moisture].
    Li Y; Wei YM; Zhang B; Yan YL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Dec; 25(12):1963-7. PubMed ID: 16544482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat.
    Zhao H; Guo B; Wei Y; Zhang B
    Food Chem; 2013 Jun; 138(2-3):1902-7. PubMed ID: 23411323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of grown origin, genotype, harvest year, and their interactions of wheat kernels on near infrared spectral fingerprints for geographical traceability.
    Zhao H; Guo B; Wei Y; Zhang B
    Food Chem; 2014; 152():316-22. PubMed ID: 24444943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein content prediction in single wheat kernels using hyperspectral imaging.
    Caporaso N; Whitworth MB; Fisk ID
    Food Chem; 2018 Feb; 240():32-42. PubMed ID: 28946278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Identification of fine wool and cashmere by using Vis/NIR spectroscopy technology].
    Wu GF; Zhu DS; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1260-3. PubMed ID: 18800700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery.
    Zuzak KJ; Naik SC; Alexandrakis G; Hawkins D; Behbehani K; Livingston EH
    Anal Chem; 2007 Jun; 79(12):4709-15. PubMed ID: 17492839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of maize kernels using NIR hyperspectral imaging.
    Williams PJ; Kucheryavskiy S
    Food Chem; 2016 Oct; 209():131-8. PubMed ID: 27173544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on model and wavelength selection of near infrared spectral information].
    Zheng YM; Zhang J; Chen XD; Shen XG; Zhang TQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jun; 24(6):675-8. PubMed ID: 15766180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores.
    Yao H; Hruska Z; Kincaid R; Brown R; Cleveland T; Bhatnagar D
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):701-9. PubMed ID: 20221935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online detection and quantification of ergot bodies in cereals using near infrared hyperspectral imaging.
    Vermeulen P; Pierna JA; Egmond HP; Dardenne P; Baeten V
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(2):232-40. PubMed ID: 22059559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.