These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 21237527)
1. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers. Satyawali Y; Seuntjens P; Van Roy S; Joris I; Vangeel S; Dejonghe W; Vanbroekhoven K J Contam Hydrol; 2011 Apr; 123(3-4):83-93. PubMed ID: 21237527 [TBL] [Abstract][Full Text] [Related]
2. Microbial processes as key drivers for metal (im)mobilization along a redox gradient in the saturated zone. Vanbroekhoven K; Van Roy S; Gielen C; Maesen M; Ryngaert A; Diels L; Seuntjens P Environ Pollut; 2007 Aug; 148(3):759-69. PubMed ID: 17445959 [TBL] [Abstract][Full Text] [Related]
3. Transport and attenuation of metal(loid)s in mine tailings amended with organic carbon: Column experiments. Lindsay MB; Blowes DW; Ptacek CJ; Condon PD J Contam Hydrol; 2011 Jul; 125(1-4):26-38. PubMed ID: 21592616 [TBL] [Abstract][Full Text] [Related]
4. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer. Doerr NA; Ptacek CJ; Blowes DW J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605 [TBL] [Abstract][Full Text] [Related]
5. Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. Djedidi Z; Bouda M; Souissi MA; Ben Cheikh R; Mercier G; Tyagi RD; Blais JF J Hazard Mater; 2009 Dec; 172(2-3):1372-82. PubMed ID: 19713039 [TBL] [Abstract][Full Text] [Related]
6. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? Grybos M; Davranche M; Gruau G; Petitjean P J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327 [TBL] [Abstract][Full Text] [Related]
7. Recycling of agricultural solid waste, coir pith: removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon. Namasivayam C; Sangeetha D J Hazard Mater; 2006 Jul; 135(1-3):449-52. PubMed ID: 16406295 [TBL] [Abstract][Full Text] [Related]
8. Arsenate removal by zero valent iron: batch and column tests. Biterna M; Arditsoglou A; Tsikouras E; Voutsa D J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184 [TBL] [Abstract][Full Text] [Related]
9. Manganese and trace-metal mobility under reducing conditions following in situ oxidation of TCE by KMnO4: a laboratory column experiment. Loomer DB; Al TA; Banks VJ; Parker BL; Mayer KU J Contam Hydrol; 2011 Jan; 119(1-4):13-24. PubMed ID: 20889229 [TBL] [Abstract][Full Text] [Related]
10. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption. Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237 [TBL] [Abstract][Full Text] [Related]
11. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. Di Palma L; Mecozzi R J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047 [TBL] [Abstract][Full Text] [Related]
12. A study on removal characteristics of heavy metals from aqueous solution by fly ash. Cho H; Oh D; Kim K J Hazard Mater; 2005 Dec; 127(1-3):187-95. PubMed ID: 16125307 [TBL] [Abstract][Full Text] [Related]
13. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation. van Breukelen BM; Griffioen J J Contam Hydrol; 2004 Sep; 73(1-4):181-205. PubMed ID: 15336794 [TBL] [Abstract][Full Text] [Related]
14. Simulating bioremediation of uranium-contaminated aquifers; uncertainty assessment of model parameters. Wang S; Jaffé PR; Li G; Wang SW; Rabitz HA J Contam Hydrol; 2003 Jul; 64(3-4):283-307. PubMed ID: 12814885 [TBL] [Abstract][Full Text] [Related]
15. Treatment of leachate from MSWI bottom ash landfilling with anaerobic sulphate-reducing process. Sivula LJ; Väisänen AO; Rintala JA Water Res; 2007 Feb; 41(4):835-41. PubMed ID: 17224170 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents. Genç-Fuhrman H; Mikkelsen PS; Ledin A Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951 [TBL] [Abstract][Full Text] [Related]
17. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Rivett MO; Buss SR; Morgan P; Smith JW; Bemment CD Water Res; 2008 Oct; 42(16):4215-32. PubMed ID: 18721996 [TBL] [Abstract][Full Text] [Related]
18. A washing procedure to mobilize mixed contaminants from soil: II. Heavy metals. Ehsan S; Prasher SO; Marshall WD J Environ Qual; 2006; 35(6):2084-91. PubMed ID: 17071877 [TBL] [Abstract][Full Text] [Related]
19. Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil. Lim TT; Chui PC; Goh KH Chemosphere; 2005 Feb; 58(8):1031-40. PubMed ID: 15664611 [TBL] [Abstract][Full Text] [Related]
20. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Zagury GJ; Kulnieks VI; Neculita CM Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]