These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21237560)

  • 1. Optimization of the synthesis of a new coagulant from a tannin extract.
    Beltrán-Heredia J; Sánchez-Martín J; Dávila-Acedo MA
    J Hazard Mater; 2011 Feb; 186(2-3):1704-12. PubMed ID: 21237560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface water and wastewater treatment using a new tannin-based coagulant. Pilot plant trials.
    Sánchez-Martín J; Beltrán-Heredia J; Solera-Hernández C
    J Environ Manage; 2010 Oct; 91(10):2051-8. PubMed ID: 20580152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The removal of anionic dyes from aqueous solutions in the presence of anionic surfactant using aminopropylsilica--a kinetic study.
    Cestari AR; Vieira EF; Vieira GS; Almeida LE
    J Hazard Mater; 2006 Nov; 138(1):133-41. PubMed ID: 16797835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology.
    Wang JP; Chen YZ; Wang Y; Yuan SJ; Yu HQ
    Water Res; 2011 Nov; 45(17):5633-40. PubMed ID: 21920576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the optimum conditions in the removal of Bomaplex Red CR-L dye from the textile wastewater using O3, H2O2, HCO3- and PAC.
    Oguz E; Keskinler B; Celik C; Celik Z
    J Hazard Mater; 2006 Apr; 131(1-3):66-72. PubMed ID: 16361055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Color removal from textile dyebath effluents in a zeolite fixed bed reactor: determination of optimum process conditions using Taguchi method.
    Engin AB; Ozdemir O; Turan M; Turan AZ
    J Hazard Mater; 2008 Nov; 159(2-3):348-53. PubMed ID: 18387737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NiO111 nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater.
    Song Z; Chen L; Hu J; Richards R
    Nanotechnology; 2009 Jul; 20(27):275707. PubMed ID: 19531863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater.
    Ahmad AA; Hameed BH
    J Hazard Mater; 2010 Jan; 173(1-3):487-93. PubMed ID: 19765899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some properties of a sequencing batch reactor system for removal of vat dyes.
    Sirianuntapiboon S; Chairattanawan K; Jungphungsukpanich S
    Bioresour Technol; 2006 Jul; 97(10):1243-52. PubMed ID: 16023339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: optimization through response surface methodology.
    Körbahti BK; Tanyolaç A
    J Hazard Mater; 2008 Mar; 151(2-3):422-31. PubMed ID: 17656018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of sulfacid brilliant pink from an aqueous stream by adsorption onto surfactant-modified Ti-pillared montmorillonite.
    Bouras O; Chami T; Houari M; Khalaf H; Bollinger JC; Baudu M
    Environ Technol; 2002 Apr; 23(4):405-11. PubMed ID: 12088367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of dyes and textile wastewater by potassium permanganate.
    Xu XR; Li HB; Wang WH; Gu JD
    Chemosphere; 2005 May; 59(6):893-8. PubMed ID: 15811419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of effects of acid activated saw dust on the removal of different dissolved tannery dyes (acid dye) from aqueous solutions.
    Dhar NR; Khoda AK; Khan AH; Bala P; Karim MF
    J Environ Sci Eng; 2005 Apr; 47(2):103-8. PubMed ID: 16649612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of radiation purification of polluted water and wastewater.
    Pikaev AK
    Water Sci Technol; 2001; 44(5):131-8. PubMed ID: 11695450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of lead from lead electroplating industrial effluent using sago waste.
    Jeyanthi GP; Shanthi G
    J Environ Sci Eng; 2007 Jan; 49(1):13-6. PubMed ID: 18472553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin.
    Zhan XM; Zhao X
    Water Res; 2003 Sep; 37(16):3905-12. PubMed ID: 12909109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of optimum operating conditions for industrial dye wastewater treatment using adaptive heuristic criticism pH control.
    Zeybek Z; Yüce Cetinkaya S; Alioglu F; Alpbaz M
    J Environ Manage; 2007 Oct; 85(2):404-14. PubMed ID: 17141939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material.
    Gupta VK; Ali I; Saini VK
    J Colloid Interface Sci; 2007 Nov; 315(1):87-93. PubMed ID: 17689548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical optimization for decolorization of textile dyes using Trametes versicolor.
    Srinivasan SV; Murthy DV
    J Hazard Mater; 2009 Jun; 165(1-3):909-14. PubMed ID: 19081186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing removal efficiency of anionic dye by combination and calcination of clay materials and calcium hydroxide.
    Vimonses V; Jin B; Chow CW; Saint C
    J Hazard Mater; 2009 Nov; 171(1-3):941-7. PubMed ID: 19604637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.