These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 2123863)
41. Subunit and amino acid interactions in the Escherichia coli mannitol permease: a functional complementation study of coexpressed mutant permease proteins. Saraceni-Richards CA; Jacobson GR J Bacteriol; 1997 Aug; 179(16):5171-7. PubMed ID: 9260961 [TBL] [Abstract][Full Text] [Related]
42. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Mechanism for transfer of the phosphoryl group from phosphoenolpyruvate to fructose. Lolkema JS; ten Hoeve-Duurkens RH; Robillard GT Eur J Biochem; 1985 Jun; 149(3):625-31. PubMed ID: 3874060 [TBL] [Abstract][Full Text] [Related]
43. Cytoplasmic phosphorylating domain of the mannitol-specific transport protein of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli: overexpression, purification, and functional complementation with the mannitol binding domain. van Weeghel RP; Meyer G; Pas HH; Keck W; Robillard GT Biochemistry; 1991 Oct; 30(39):9478-85. PubMed ID: 1909895 [TBL] [Abstract][Full Text] [Related]
44. Cysteine cross-linking defines part of the dimer and B/C domain interface of the Escherichia coli mannitol permease. van Montfort BA; Schuurman-Wolters GK; Duurkens RH; Mensen R; Poolman B; Robillard GT J Biol Chem; 2001 Apr; 276(16):12756-63. PubMed ID: 11278734 [TBL] [Abstract][Full Text] [Related]
45. Domain complementation studies reveal residues critical for the activity of the mannitol permease from Escherichia coli. Vos EP; ter Horst R; Poolman B; Broos J Biochim Biophys Acta; 2009 Feb; 1788(2):581-6. PubMed ID: 19013424 [TBL] [Abstract][Full Text] [Related]
46. Evidence for two distinct conformations of the Escherichia coli mannitol permease that are important for its transport and phosphorylation functions. Khandekar SS; Jacobson GR J Cell Biochem; 1989 Feb; 39(2):207-16. PubMed ID: 2654151 [TBL] [Abstract][Full Text] [Related]
47. Characterization of the protonation and hydrogen bonding state of the histidine residues in IIAmtl, a domain of the phosphoenolpyruvate-dependent mannitol-specific transport protein. Van Dijk AA; Scheek RM; Dijkstra K; Wolters GK; Robillard GT Biochemistry; 1992 Sep; 31(37):9063-72. PubMed ID: 1390693 [TBL] [Abstract][Full Text] [Related]
48. Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Lux R; Jahreis K; Bettenbrock K; Parkinson JS; Lengeler JW Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11583-7. PubMed ID: 8524808 [TBL] [Abstract][Full Text] [Related]
49. Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli: evidence for IIImannose, IIIfructose, IIIglucitol, and the phosphorylation of enzyme IImannitol and enzyme IIN-acetylglucosamine. Waygood EB; Mattoo RL; Peri KG J Cell Biochem; 1984; 25(3):139-59. PubMed ID: 6434550 [TBL] [Abstract][Full Text] [Related]
50. The intramembrane topography of the mannitol-specific enzyme II of the Escherichia coli phosphotransferase system. Jacobson GR; Kelly DM; Finlay DR J Biol Chem; 1983 Mar; 258(5):2955-9. PubMed ID: 6338009 [TBL] [Abstract][Full Text] [Related]
51. Phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli: overexpression, purification, and characterization of the enzymatically active C-terminal domain of enzyme IImtl equivalent to enzyme IIImtl. van Weeghel RP; Meyer GH; Keck W; Robillard GT Biochemistry; 1991 Feb; 30(7):1774-9. PubMed ID: 1993192 [TBL] [Abstract][Full Text] [Related]
52. Bacterial phosphotransferase system: regulation of mannitol enzyme II activity by sulfhydryl oxidation. Grenier FC; Waygood EB; Saier MH Biochemistry; 1985 Jan; 24(1):47-51. PubMed ID: 3888258 [TBL] [Abstract][Full Text] [Related]
53. Stoichiometry and substrate affinity of the mannitol transporter, EnzymeIImtl, from Escherichia coli. Veldhuis G; Broos J; Poolman B; Scheek RM Biophys J; 2005 Jul; 89(1):201-10. PubMed ID: 15879478 [TBL] [Abstract][Full Text] [Related]
54. Sensitive monitoring of the dynamics of a membrane-bound transport protein by tryptophan phosphorescence spectroscopy. Broos J; Strambini GB; Gonnelli M; Vos EP; Koolhof M; Robillard GT Biochemistry; 2000 Sep; 39(35):10877-83. PubMed ID: 10978174 [TBL] [Abstract][Full Text] [Related]
55. Interdomain interactions between the hydrophilic domains of the mannitol transporter of Escherichia coli in the unphosphorylated and phosphorylated states. Meijberg W; Schuurman-Wolters GK; Robillard GT Biochemistry; 1996 Feb; 35(8):2759-66. PubMed ID: 8611583 [TBL] [Abstract][Full Text] [Related]
56. Phosphoenolpyruvate-dependent fructose phosphotransferase system in Rhodopseudomonas sphaeroides. The coupling between transport and phosphorylation in inside-out vesicles. Lolkema JS; Robillard GT Eur J Biochem; 1985 Feb; 147(1):69-75. PubMed ID: 3871694 [TBL] [Abstract][Full Text] [Related]
57. Mannitol-specific enzyme II of the bacterial phosphotransferase system. I. Properties of the purified permease. Jacobson GR; Lee CA; Leonard JE; Saier MH J Biol Chem; 1983 Sep; 258(17):10748-56. PubMed ID: 6350293 [TBL] [Abstract][Full Text] [Related]
59. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system. Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611 [TBL] [Abstract][Full Text] [Related]
60. High-resolution structure of the phosphorylated form of the histidine-containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR-NOE data. van Nuland NA; Boelens R; Scheek RM; Robillard GT J Mol Biol; 1995 Feb; 246(1):180-93. PubMed ID: 7853396 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]