These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21238723)

  • 21. Cell microarrays based on hydrogel microstructures for the application to cell-based biosensor.
    Koh WG
    Methods Mol Biol; 2011; 671():133-45. PubMed ID: 20967627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of pH and electrically controlled swelling of hydrogel-based micro-sensors/actuators.
    Yew YK; Ng TY; Li H; Lam KY
    Biomed Microdevices; 2007 Aug; 9(4):487-99. PubMed ID: 17520372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Verification of performance with the automated direct optical TIRF immunosensor (River Analyser) in single and multi-analyte assays with real water samples.
    Tschmelak J; Proll G; Gauglitz G
    Biosens Bioelectron; 2004 Nov; 20(4):743-52. PubMed ID: 15522589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an improved method for trace analysis of chloramphenicol using molecularly imprinted polymers.
    Boyd B; Björk H; Billing J; Shimelis O; Axelsson S; Leonora M; Yilmaz E
    J Chromatogr A; 2007 Dec; 1174(1-2):63-71. PubMed ID: 17900594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol.
    Hong CC; Chang PH; Lin CC; Hong CL
    Biosens Bioelectron; 2010 May; 25(9):2058-64. PubMed ID: 20206494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct detection of analyte binding to single molecularly imprinted polymer particles by confocal Raman spectroscopy.
    Bompart M; Gheber LA; De Wilde Y; Haupt K
    Biosens Bioelectron; 2009 Nov; 25(3):568-71. PubMed ID: 19233637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon nanotube array: a new MIP platform.
    Choong CL; Bendall JS; Milne WI
    Biosens Bioelectron; 2009 Nov; 25(3):652-6. PubMed ID: 19162461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenol biosensor based on hydrogel microarrays entrapping tyrosinase and quantum dots.
    Jang E; Son KJ; Kim B; Koh WG
    Analyst; 2010 Nov; 135(11):2871-8. PubMed ID: 20852777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Online hyphenation of multimodal microsolid phase extraction involving renewable molecularly imprinted and reversed-phase sorbents to liquid chromatography for automatic multiresidue assays.
    Boonjob W; Yu Y; Miró M; Segundo MA; Wang J; Cerdà V
    Anal Chem; 2010 Apr; 82(7):3052-60. PubMed ID: 20218575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole.
    Ebarvia BS; Cabanilla S; Sevilla F
    Talanta; 2005 Mar; 66(1):145-52. PubMed ID: 18969974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical sensor based on molecular imprinting by photo-sensitive polymers.
    Fang C; Yi C; Wang Y; Cao Y; Liu X
    Biosens Bioelectron; 2009 Jun; 24(10):3164-9. PubMed ID: 19398197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application and analysis of structure-switching aptamers for small molecule quantification.
    Xie S; Walton SP
    Anal Chim Acta; 2009 Apr; 638(2):213-9. PubMed ID: 19327463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element.
    Lakshmi D; Bossi A; Whitcombe MJ; Chianella I; Fowler SA; Subrahmanyam S; Piletska EV; Piletsky SA
    Anal Chem; 2009 May; 81(9):3576-84. PubMed ID: 19354259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanotemplating for two-dimensional molecular imprinting.
    Voicu R; Faid K; Farah AA; Bensebaa F; Barjovanu R; Py C; Tao Y
    Langmuir; 2007 May; 23(10):5452-8. PubMed ID: 17407335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface.
    Marx KA
    Biomacromolecules; 2003; 4(5):1099-120. PubMed ID: 12959572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecularly imprinted polymers as analyte sequesters and selective surfaces for easy ambient sonic-spray ionization.
    Figueiredo EC; Sanvido GB; Arruda MA; Eberlin MN
    Analyst; 2010 Apr; 135(4):726-30. PubMed ID: 20309446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogel-Forming Microneedle Arrays Allow Detection of Drugs and Glucose In Vivo: Potential for Use in Diagnosis and Therapeutic Drug Monitoring.
    Caffarel-Salvador E; Brady AJ; Eltayib E; Meng T; Alonso-Vicente A; Gonzalez-Vazquez P; Torrisi BM; Vicente-Perez EM; Mooney K; Jones DS; Bell SE; McCoy CP; McCarthy HO; McElnay JC; Donnelly RF
    PLoS One; 2015; 10(12):e0145644. PubMed ID: 26717198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single step patterning of molecularly imprinted polymers for large scale fabrication of microbiochips.
    Guillon S; Lemaire R; Linares AV; Haupt K; Ayela C
    Lab Chip; 2009 Oct; 9(20):2987-91. PubMed ID: 19789754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signaling molecularly imprinted polymers: molecular recognition-based sensing materials.
    Takeuchi T; Mukawa T; Shinmori H
    Chem Rec; 2005; 5(5):263-75. PubMed ID: 16211586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Grafting of molecularly imprinted polymers from the surface of silica gel particles via reversible addition-fragmentation chain transfer polymerization: a selective sorbent for theophylline.
    Li Y; Zhou WH; Yang HH; Wang XR
    Talanta; 2009 Jul; 79(2):141-5. PubMed ID: 19559855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.