BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

626 related articles for article (PubMed ID: 21240259)

  • 1. Structure of human O-GlcNAc transferase and its complex with a peptide substrate.
    Lazarus MB; Nam Y; Jiang J; Sliz P; Walker S
    Nature; 2011 Jan; 469(7331):564-7. PubMed ID: 21240259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conserved threonine-rich region of the HCF-1
    Kapuria V; Röhrig UF; Waridel P; Lammers F; Borodkin VS; van Aalten DMF; Zoete V; Herr W
    J Biol Chem; 2018 Nov; 293(46):17754-17768. PubMed ID: 30224358
    [No Abstract]   [Full Text] [Related]  

  • 3. The active site of O-GlcNAc transferase imposes constraints on substrate sequence.
    Pathak S; Alonso J; Schimpl M; Rafie K; Blair DE; Borodkin VS; Albarbarawi O; van Aalten DMF
    Nat Struct Mol Biol; 2015 Sep; 22(9):744-750. PubMed ID: 26237509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Substrates Engage the Lumen of O-GlcNAc Transferase's Tetratricopeptide Repeat Domain in Different Ways.
    Joiner CM; Hammel FA; Janetzko J; Walker S
    Biochemistry; 2021 Mar; 60(11):847-853. PubMed ID: 33709700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uridine diphosphate release mechanism in O-N-acetylglucosamine (O-GlcNAc) transferase catalysis.
    She N; Zhao Y; Hao J; Xie S; Wang C
    Biochim Biophys Acta Gen Subj; 2019 Mar; 1863(3):609-622. PubMed ID: 30550897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificity provides insights into the sugar donor recognition mechanism of O-GlcNAc transferase (OGT).
    Ma X; Liu P; Yan H; Sun H; Liu X; Zhou F; Li L; Chen Y; Muthana MM; Chen X; Wang PG; Zhang L
    PLoS One; 2013; 8(5):e63452. PubMed ID: 23700425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced transfer of a photocross-linking N-acetylglucosamine (GlcNAc) analog by an O-GlcNAc transferase mutant with converted substrate specificity.
    Rodriguez AC; Yu SH; Li B; Zegzouti H; Kohler JJ
    J Biol Chem; 2015 Sep; 290(37):22638-48. PubMed ID: 26240142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity.
    Lubas WA; Hanover JA
    J Biol Chem; 2000 Apr; 275(15):10983-8. PubMed ID: 10753899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection.
    Joiner CM; Levine ZG; Aonbangkhen C; Woo CM; Walker S
    J Am Chem Soc; 2019 Aug; 141(33):12974-12978. PubMed ID: 31373491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bisubstrate Ether-Linked Uridine-Peptide Conjugates as O-GlcNAc Transferase Inhibitors.
    Makwana V; Ryan P; Malde AK; Anoopkumar-Dukie S; Rudrawar S
    ChemMedChem; 2021 Feb; 16(3):477-483. PubMed ID: 32991074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibodies and activity measurements for the detection of O-GlcNAc transferase and assay of its substrate, UDP-GlcNAc.
    Lefebvre T; Drougat L; Olivier-Van Stichelen S; Michalski JC; Vercoutter-Edouart AS
    Methods Mol Biol; 2013; 1022():147-59. PubMed ID: 23765660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Promiscuity of O-GlcNAc Transferase Enables Unexpected Metabolic Engineering of Cytoplasmic Proteins with 2-Azido-2-deoxy-glucose.
    Shen DL; Liu TW; Zandberg W; Clark T; Eskandari R; Alteen MG; Tan HY; Zhu Y; Cecioni S; Vocadlo D
    ACS Chem Biol; 2017 Jan; 12(1):206-213. PubMed ID: 27935279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small molecule that inhibits OGT activity in cells.
    Ortiz-Meoz RF; Jiang J; Lazarus MB; Orman M; Janetzko J; Fan C; Duveau DY; Tan ZW; Thomas CJ; Walker S
    ACS Chem Biol; 2015 Jun; 10(6):1392-7. PubMed ID: 25751766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical tools to explore nutrient-driven O-GlcNAc cycling.
    Kim EJ; Bond MR; Love DC; Hanover JA
    Crit Rev Biochem Mol Biol; 2014; 49(4):327-42. PubMed ID: 25039763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the conformational dynamics of UDP-GlcNAc recognition by O-GlcNAc transferase via Markov state model.
    Tian J; Dong X; Wu T; Wen P; Liu X; Zhang M; An X; Shi D
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128405. PubMed ID: 38016609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting OGT's TPR domain to identify determinants of cellular function.
    Potter SC; Gibbs BE; Hammel FA; Joiner CM; Paulo JA; Janetzko J; Levine ZG; Fei GQ; Haggarty SJ; Walker S
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2401729121. PubMed ID: 38768345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bisubstrate UDP-peptide conjugates as human O-GlcNAc transferase inhibitors.
    Borodkin VS; Schimpl M; Gundogdu M; Rafie K; Dorfmueller HC; Robinson DA; van Aalten DM
    Biochem J; 2014 Feb; 457(3):497-502. PubMed ID: 24256146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase.
    Hu CW; Worth M; Fan D; Li B; Li H; Lu L; Zhong X; Lin Z; Wei L; Ge Y; Li L; Jiang J
    Nat Chem Biol; 2017 Dec; 13(12):1267-1273. PubMed ID: 29058723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats.
    Kreppel LK; Hart GW
    J Biol Chem; 1999 Nov; 274(45):32015-22. PubMed ID: 10542233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UDP-N-acetylglucosaminyl transferase (OGT) in brain tissue: temperature sensitivity and subcellular distribution of cytosolic and nuclear enzyme.
    Okuyama R; Marshall S
    J Neurochem; 2003 Sep; 86(5):1271-80. PubMed ID: 12911634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.