BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21240477)

  • 1. Oleate-mediated activation of phospholipase D and mammalian target of rapamycin (mTOR) regulates proliferation and rapamycin sensitivity of hepatocarcinoma cells.
    Arous C; Naïmi M; Van Obberghen E
    Diabetologia; 2011 Apr; 54(4):954-64. PubMed ID: 21240477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity.
    Liu L; Luo Y; Chen L; Shen T; Xu B; Chen W; Zhou H; Han X; Huang S
    J Biol Chem; 2010 Dec; 285(49):38362-73. PubMed ID: 20937815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapamycin attenuates BAFF-extended proliferation and survival via disruption of mTORC1/2 signaling in normal and neoplastic B-lymphoid cells.
    Zeng Q; Qin S; Zhang H; Liu B; Qin J; Wang X; Zhang R; Liu C; Dong X; Zhang S; Huang S; Chen L
    J Cell Physiol; 2018 Jan; 233(1):516-529. PubMed ID: 28300280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GSK-3 directly regulates phospho-4EBP1 in renal cell carcinoma cell-line: an intrinsic subcellular mechanism for resistance to mTORC1 inhibition.
    Ito H; Ichiyanagi O; Naito S; Bilim VN; Tomita Y; Kato T; Nagaoka A; Tsuchiya N
    BMC Cancer; 2016 Jul; 16():393. PubMed ID: 27387559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1.
    Thoreen CC; Kang SA; Chang JW; Liu Q; Zhang J; Gao Y; Reichling LJ; Sim T; Sabatini DM; Gray NS
    J Biol Chem; 2009 Mar; 284(12):8023-32. PubMed ID: 19150980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relieving autophagy and 4EBP1 from rapamycin resistance.
    Nyfeler B; Bergman P; Triantafellow E; Wilson CJ; Zhu Y; Radetich B; Finan PM; Klionsky DJ; Murphy LO
    Mol Cell Biol; 2011 Jul; 31(14):2867-76. PubMed ID: 21576371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AKT inhibition overcomes rapamycin resistance by enhancing the repressive function of PRAS40 on mTORC1/4E-BP1 axis.
    Mi W; Ye Q; Liu S; She QB
    Oncotarget; 2015 Jun; 6(16):13962-77. PubMed ID: 25961827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reciprocal regulation of mTOR complexes in pancreatic islets from humans with type 2 diabetes.
    Yuan T; Rafizadeh S; Gorrepati KD; Lupse B; Oberholzer J; Maedler K; Ardestani A
    Diabetologia; 2017 Apr; 60(4):668-678. PubMed ID: 28004151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-dose rapamycin induces apoptosis in human cancer cells by dissociating mTOR complex 1 and suppressing phosphorylation of 4E-BP1.
    Yellen P; Saqcena M; Salloum D; Feng J; Preda A; Xu L; Rodrik-Outmezguine V; Foster DA
    Cell Cycle; 2011 Nov; 10(22):3948-56. PubMed ID: 22071574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs.
    Dowling RJ; Topisirovic I; Alain T; Bidinosti M; Fonseca BD; Petroulakis E; Wang X; Larsson O; Selvaraj A; Liu Y; Kozma SC; Thomas G; Sonenberg N
    Science; 2010 May; 328(5982):1172-6. PubMed ID: 20508131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical manipulation of the mTORC1 pathway in industrially relevant CHOK1 cells enhances production of therapeutic proteins.
    Dadehbeigi N; Dickson AJ
    Biotechnol J; 2015 Jul; 10(7):1041-50. PubMed ID: 26059164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells.
    Jossé L; Xie J; Proud CG; Smales CM
    Biochem J; 2016 Dec; 473(24):4651-4664. PubMed ID: 27760840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of hypoxia-inducible factor 1α (HIF-1α) by tirapazamine is dependent on eIF2α phosphorylation rather than the mTORC1/4E-BP1 pathway.
    Zhang J; Cao J; Weng Q; Wu R; Yan Y; Jing H; Zhu H; He Q; Yang B
    PLoS One; 2010 Nov; 5(11):e13910. PubMed ID: 21085474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquilin-mediated Small Molecule Inhibition of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling.
    Coffey RT; Shi Y; Long MJ; Marr MT; Hedstrom L
    J Biol Chem; 2016 Mar; 291(10):5221-33. PubMed ID: 26740621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin.
    Toschi A; Lee E; Xu L; Garcia A; Gadir N; Foster DA
    Mol Cell Biol; 2009 Mar; 29(6):1411-20. PubMed ID: 19114562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells.
    Jiang S; Zou Z; Nie P; Wen R; Xiao Y; Tang J
    PLoS One; 2015; 10(7):e0132880. PubMed ID: 26176608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile.
    Wang BT; Ducker GS; Barczak AJ; Barbeau R; Erle DJ; Shokat KM
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15201-6. PubMed ID: 21876130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids.
    Dickinson JM; Fry CS; Drummond MJ; Gundermann DM; Walker DK; Glynn EL; Timmerman KL; Dhanani S; Volpi E; Rasmussen BB
    J Nutr; 2011 May; 141(5):856-62. PubMed ID: 21430254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia.
    Tamburini J; Green AS; Bardet V; Chapuis N; Park S; Willems L; Uzunov M; Ifrah N; Dreyfus F; Lacombe C; Mayeux P; Bouscary D
    Blood; 2009 Aug; 114(8):1618-27. PubMed ID: 19458359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacologic co-inhibition of Mnks and mTORC1 synergistically suppresses proliferation and perturbs cell cycle progression in blast crisis-chronic myeloid leukemia cells.
    Teo T; Yu M; Yang Y; Gillam T; Lam F; Sykes MJ; Wang S
    Cancer Lett; 2015 Feb; 357(2):612-23. PubMed ID: 25527453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.