These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21240861)

  • 1. A simple description of age-related changes in crystalline lens thickness.
    García-Domene MC; Díez-Ajenjo MA; Gracia V; Felipe A; Artigas JM
    Eur J Ophthalmol; 2011; 21(5):597-603. PubMed ID: 21240861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of the human eye lens.
    Augusteyn RC
    Mol Vis; 2007 Feb; 13():252-7. PubMed ID: 17356512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related changes in the anterior segment biometry during accommodation.
    Shao Y; Tao A; Jiang H; Mao X; Zhong J; Shen M; Lu F; Xu Z; Karp CL; Wang J
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):3522-30. PubMed ID: 26030106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of the Crystalline Lens Power In Vivo as a Function of Age.
    Jongenelen S; Rozema JJ; Tassignon MJ;
    Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7029-35. PubMed ID: 26523387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human lens weights with increasing age.
    Mohamed A; Augusteyn RC
    Mol Vis; 2018; 24():867-xxx. PubMed ID: 30820139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related paraxial schematic emmetropic eyes.
    Atchison DA
    Ophthalmic Physiol Opt; 2009 Jan; 29(1):58-64. PubMed ID: 19154281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A longitudinal study of accommodative changes in biometry during incipient presbyopia.
    Laughton DS; Sheppard AL; Davies LN
    Ophthalmic Physiol Opt; 2016 Jan; 36(1):33-42. PubMed ID: 26432063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation.
    Sheppard AL; Evans CJ; Singh KD; Wolffsohn JS; Dunne MC; Davies LN
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3689-97. PubMed ID: 21296812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging studies on normal lens using the Scheimpflug slit-lamp camera.
    Kashima K; Trus BL; Unser M; Edwards PA; Datiles MB
    Invest Ophthalmol Vis Sci; 1993 Jan; 34(1):263-9. PubMed ID: 8425834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical biometry of the anterior eye segment: interexaminer and intraexaminer reliability of ACMaster.
    Sacu S; Findl O; Buehl W; Kiss B; Gleiss A; Drexler W
    J Cataract Refract Surg; 2005 Dec; 31(12):2334-9. PubMed ID: 16473227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biometry and visual function of a healthy cohort in Leipzig, Germany.
    Zocher MT; Rozema JJ; Oertel N; Dawczynski J; Wiedemann P; Rauscher FG;
    BMC Ophthalmol; 2016 Jun; 16():79. PubMed ID: 27268271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refractive error, ocular biometry, and lens opalescence in an adult population: the Los Angeles Latino Eye Study.
    Shufelt C; Fraser-Bell S; Ying-Lai M; Torres M; Varma R;
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4450-60. PubMed ID: 16303933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of age-derived lens thickness to optically measured lens thickness in IOL power calculation: a clinical study.
    Lam S
    J Refract Surg; 2012 Feb; 28(2):154-5. PubMed ID: 22185465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of the human lens in the Indian adult population: preliminary observations.
    Mohamed A; Sangwan VS; Augusteyn RC
    Indian J Ophthalmol; 2012; 60(6):511-5. PubMed ID: 23202388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystalline lens thickness changes as observed by pachometry.
    Dalziel CC; Egan DJ
    Am J Optom Physiol Opt; 1982 May; 59(5):442-7. PubMed ID: 7102803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens.
    Urs R; Ho A; Manns F; Parel JM
    Vision Res; 2010 Jun; 50(11):1041-7. PubMed ID: 20338192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the cataractous lens.
    Shammas HJ; Shammas MC
    J Cataract Refract Surg; 2015 Sep; 41(9):1875-9. PubMed ID: 26603396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo.
    Rozema JJ; Atchison DA; Kasthurirangan S; Pope JM; Tassignon MJ
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2533-40. PubMed ID: 22427565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Nucleus of the human crystalline lens. II. Thickness].
    Rodriguez Caballero ML; Gerhard JP; Nordmann J
    Arch Ophtalmol Rev Gen Ophtalmol; 1973 May; 33(5):425-8. PubMed ID: 4270423
    [No Abstract]   [Full Text] [Related]  

  • 20. Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus.
    Koretz JF; Cook CA; Kaufman PL
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):569-78. PubMed ID: 9071209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.