BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 2124112)

  • 1. Two cytosolic components of the neutrophil NADPH oxidase, P47-phox and P67-phox, are not flavoproteins.
    Chiba T; Kaneda M; Fujii H; Clark RA; Nauseef WM; Kakinuma K
    Biochem Biophys Res Commun; 1990 Nov; 173(1):376-81. PubMed ID: 2124112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components.
    Nauseef WM; Volpp BD; McCormick S; Leidal KG; Clark RA
    J Biol Chem; 1991 Mar; 266(9):5911-7. PubMed ID: 1848559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox.
    De Leo FR; Ulman KV; Davis AR; Jutila KL; Quinn MT
    J Biol Chem; 1996 Jul; 271(29):17013-20. PubMed ID: 8663333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution and characterization of the human neutrophil respiratory burst oxidase using recombinant p47-phox, p67-phox and plasma membrane.
    Uhlinger DJ; Inge KL; Kreck ML; Tyagi SR; Neckelmann N; Lambeth JD
    Biochem Biophys Res Commun; 1992 Jul; 186(1):509-16. PubMed ID: 1321612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The p67-phox cytosolic peptide of the respiratory burst oxidase from human neutrophils. Functional aspects.
    Okamura N; Babior BM; Mayo LA; Peveri P; Smith RM; Curnutte JT
    J Clin Invest; 1990 May; 85(5):1583-7. PubMed ID: 2159023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phagocyte 47-kilodalton cytosolic oxidase protein is an early reactant in activation of the respiratory burst.
    Kleinberg ME; Malech HL; Rotrosen D
    J Biol Chem; 1990 Sep; 265(26):15577-83. PubMed ID: 2168417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p21rac does not participate in the early interaction between p47-phox and cytochrome b558 that leads to phagocyte NADPH oxidase activation in vitro.
    Kleinberg ME; Malech HL; Mital DA; Leto TL
    Biochemistry; 1994 Mar; 33(9):2490-5. PubMed ID: 8117710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The respiratory burst oxidase of human neutrophils. Guanine nucleotides and arachidonate regulate the assembly of a multicomponent complex in a semirecombinant cell-free system.
    Uhlinger DJ; Tyagi SR; Inge KL; Lambeth JD
    J Biol Chem; 1993 Apr; 268(12):8624-31. PubMed ID: 8386165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a thermolabile component of the human neutrophil NADPH oxidase. A model for chronic granulomatous disease caused by deficiency of the p67-phox cytosolic component.
    Erickson RW; Malawista SE; Garrett MC; Van Blaricom G; Leto TL; Curnutte JT
    J Clin Invest; 1992 May; 89(5):1587-95. PubMed ID: 1314852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of flavin contents in neutrophils by a sensitive chemiluminescence assay: evidence for no translocation of flavoproteins from the cytosol to the membrane upon cell stimulation.
    Yoshida LS; Chiba T; Kakinuma K
    Biochim Biophys Acta; 1992 Jun; 1135(3):245-52. PubMed ID: 1320407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of neutrophil NADPH oxidase proteins gp91-phox, p22-phox, p67-phox, and p47-phox in mammalian species.
    Hitt ND; Kleinberg ME
    Am J Vet Res; 1996 May; 57(5):672-6. PubMed ID: 8723880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production.
    Koshkin V; Lotan O; Pick E
    J Biol Chem; 1996 Nov; 271(48):30326-9. PubMed ID: 8939991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, p47-phox, p21rac1, and cytochrome b-245.
    Abo A; Boyhan A; West I; Thrasher AJ; Segal AW
    J Biol Chem; 1992 Aug; 267(24):16767-70. PubMed ID: 1512217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic oxidase factors in the NADPH-dependent oxidase of human neutrophils.
    Nauseef WM
    Eur J Haematol; 1993 Nov; 51(5):301-8. PubMed ID: 8282092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of neutrophil NADPH oxidase factors p47-phox and p67-phox from recombinant baculoviruses.
    Leto TL; Garrett MC; Fujii H; Nunoi H
    J Biol Chem; 1991 Oct; 266(29):19812-8. PubMed ID: 1918085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase activity is independent of p47phox in vitro.
    Freeman JL; Lambeth JD
    J Biol Chem; 1996 Sep; 271(37):22578-82. PubMed ID: 8798426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent labeling of the leukocyte NADPH oxidase subunit p47(phox): evidence for amphiphile-induced conformational changes.
    Park HS; Park JW
    Arch Biochem Biophys; 1998 Dec; 360(2):165-72. PubMed ID: 9851827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-free translocation of recombinant p47-phox, a component of the neutrophil NADPH oxidase: effects of guanosine 5'-O-(3-thiotriphosphate), diacylglycerol, and an anionic amphiphile.
    Tyagi SR; Neckelmann N; Uhlinger DJ; Burnham DN; Lambeth JD
    Biochemistry; 1992 Mar; 31(10):2765-74. PubMed ID: 1312346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system.
    Clark RA; Leidal KG; Pearson DW; Nauseef WM
    J Biol Chem; 1987 Mar; 262(9):4065-74. PubMed ID: 3031060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The assembly of neutrophil NADPH oxidase: effects of mastoparan and its synthetic analogues.
    Tisch D; Sharoni Y; Danilenko M; Aviram I
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):715-9. PubMed ID: 7654216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.