BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

889 related articles for article (PubMed ID: 21241312)

  • 1. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy.
    Zhang SB; Guan ZJ; Chang W; Hu H; Yin Q; Cao KF
    Physiol Plant; 2011 Jun; 142(2):118-27. PubMed ID: 21241312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecophysiological significance of leaf traits in Cypripedium and Paphiopedilum.
    Chang W; Zhang SB; Li SY; Hu H
    Physiol Plant; 2011 Jan; 141(1):30-9. PubMed ID: 21039576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytochrome and blue light-mediated stomatal opening in the orchid, paphiopedilum.
    Talbott LD; Zhu J; Han SW; Zeiger E
    Plant Cell Physiol; 2002 Jun; 43(6):639-46. PubMed ID: 12091717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical and diffusional determinants inside leaves explain the difference in photosynthetic capacity between Cypripedium and Paphiopedilum, Orchidaceae.
    Yang ZH; Huang W; Yang QY; Chang W; Zhang SB
    Photosynth Res; 2018 Jun; 136(3):315-328. PubMed ID: 29159723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar.
    Lawson T; Oxborough K; Morison JI; Baker NR
    J Exp Bot; 2003 Jul; 54(388):1743-52. PubMed ID: 12773521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L.
    Wang Y; Noguchi K; Terashima I
    Plant Cell Environ; 2008 Sep; 31(9):1307-16. PubMed ID: 18537998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf anatomical structures of Paphiopedilum and Cypripedium and their adaptive significance.
    Guan ZJ; Zhang SB; Guan KY; Li SY; Hu H
    J Plant Res; 2011 Mar; 124(2):289-98. PubMed ID: 20711624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthesis affects following night leaf conductance in Vicia faba.
    Easlon HM; Richards JH
    Plant Cell Environ; 2009 Jan; 32(1):58-63. PubMed ID: 19076531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opinion: stomatal responses to light and CO(2) depend on the mesophyll.
    Mott KA
    Plant Cell Environ; 2009 Nov; 32(11):1479-86. PubMed ID: 19627565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements.
    Ache P; Bauer H; Kollist H; Al-Rasheid KA; Lautner S; Hartung W; Hedrich R
    Plant J; 2010 Jun; 62(6):1072-82. PubMed ID: 20345603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco.
    von Caemmerer S; Lawson T; Oxborough K; Baker NR; Andrews TJ; Raines CA
    J Exp Bot; 2004 May; 55(400):1157-66. PubMed ID: 15107451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis.
    Wentworth M; Murchie EH; Gray JE; Villegas D; Pastenes C; Pinto M; Horton P
    J Exp Bot; 2006; 57(3):699-709. PubMed ID: 16415331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2.
    Lawson T; Lefebvre S; Baker NR; Morison JI; Raines CA
    J Exp Bot; 2008; 59(13):3609-19. PubMed ID: 18836187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function.
    Tosens T; Niinemets U; Vislap V; Eichelmann H; Castro Díez P
    Plant Cell Environ; 2012 May; 35(5):839-56. PubMed ID: 22070625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using combined measurements for comparison of light induction of stomatal conductance, electron transport rate and CO2 fixation in woody and fern species adapted to different light regimes.
    Wong SL; Chen CW; Huang HW; Weng JH
    Tree Physiol; 2012 May; 32(5):535-44. PubMed ID: 22539637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of blue light on leaf mesophyll conductance.
    Loreto F; Tsonev T; Centritto M
    J Exp Bot; 2009; 60(8):2283-90. PubMed ID: 19395388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red Light-Induced Phosphorylation of Plasma Membrane H
    Ando E; Kinoshita T
    Plant Physiol; 2018 Oct; 178(2):838-849. PubMed ID: 30104254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.
    Jiang CD; Wang X; Gao HY; Shi L; Chow WS
    Plant Physiol; 2011 Mar; 155(3):1416-24. PubMed ID: 21245193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.
    Azoulay-Shemer T; Palomares A; Bagheri A; Israelsson-Nordstrom M; Engineer CB; Bargmann BO; Stephan AB; Schroeder JI
    Plant J; 2015 Aug; 83(4):567-81. PubMed ID: 26096271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stomatal oscillations at small apertures: indications for a fundamental insufficiency of stomatal feedback-control inherent in the stomatal turgor mechanism.
    Kaiser H; Kappen L
    J Exp Bot; 2001 Jun; 52(359):1303-13. PubMed ID: 11432949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.