BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21241503)

  • 1. Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires.
    Zmasek CM; Godzik A
    Genome Biol; 2011; 12(1):R4. PubMed ID: 21241503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution and classification of myosins, a paneukaryotic whole-genome approach.
    Sebé-Pedrós A; Grau-Bové X; Richards TA; Ruiz-Trillo I
    Genome Biol Evol; 2014 Feb; 6(2):290-305. PubMed ID: 24443438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution.
    Linkeviciute V; Rackham OJ; Gough J; Oates ME; Fang H
    Biochimie; 2015 Dec; 119():269-77. PubMed ID: 25980317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes.
    Mirkin BG; Fenner TI; Galperin MY; Koonin EV
    BMC Evol Biol; 2003 Jan; 3():2. PubMed ID: 12515582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global patterns of protein domain gain and loss in superkingdoms.
    Nasir A; Kim KM; Caetano-Anollés G
    PLoS Comput Biol; 2014 Jan; 10(1):e1003452. PubMed ID: 24499935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals.
    Danchin EG; Gouret P; Pontarotti P
    BMC Evol Biol; 2006 Jan; 6():5. PubMed ID: 16420703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. This Déjà vu feeling--analysis of multidomain protein evolution in eukaryotic genomes.
    Zmasek CM; Godzik A
    PLoS Comput Biol; 2012; 8(11):e1002701. PubMed ID: 23166479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genomic survey of HECT ubiquitin ligases in eukaryotes reveals independent expansions of the HECT system in several lineages.
    Grau-Bové X; Sebé-Pedrós A; Ruiz-Trillo I
    Genome Biol Evol; 2013; 5(5):833-47. PubMed ID: 23563970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks.
    Xie X; Jin J; Mao Y
    BMC Evol Biol; 2011 Aug; 11():242. PubMed ID: 21849086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Evolutionary History of the Phox and Bem1 (PB1) Domain Across Eukaryotes.
    Mutte SK; Weijers D
    Sci Rep; 2020 Mar; 10(1):3797. PubMed ID: 32123237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes.
    Kannan S; Rogozin IB; Koonin EV
    BMC Evol Biol; 2014 Nov; 14():237. PubMed ID: 25421434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution.
    Eliáš M; Klimeš V; Derelle R; Petrželková R; Tachezy J
    Biol Direct; 2016 Feb; 11(1):5. PubMed ID: 26832778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlated duplications and losses in the evolution of palmitoylation writer and eraser families.
    Wittouck S; van Noort V
    BMC Evol Biol; 2017 Mar; 17(1):83. PubMed ID: 28320309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proteomic complexity and rise of the primordial ancestor of diversified life.
    Kim KM; Caetano-Anollés G
    BMC Evol Biol; 2011 May; 11():140. PubMed ID: 21612591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concepts of the last eukaryotic common ancestor.
    O'Malley MA; Leger MM; Wideman JG; Ruiz-Trillo I
    Nat Ecol Evol; 2019 Mar; 3(3):338-344. PubMed ID: 30778187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and evolution of eukaryotic transcription factors.
    de Mendoza A; Sebé-Pedrós A
    Curr Opin Genet Dev; 2019 Oct; 58-59():25-32. PubMed ID: 31466037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton.
    Wickstead B; Gull K; Richards TA
    BMC Evol Biol; 2010 Apr; 10():110. PubMed ID: 20423470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life.
    Kannan L; Li H; Rubinstein B; Mushegian A
    Biol Direct; 2013 Dec; 8():32. PubMed ID: 24354654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Akaryotes and Eukaryotes are independent descendants of a universal common ancestor.
    Harish A; Kurland CG
    Biochimie; 2017 Jul; 138():168-183. PubMed ID: 28461155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.