These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 21241750)
1. Tuning core vs. shell dimensions to adjust the performance of nanoscopic containers for the loading and release of doxorubicin. Lin LY; Lee NS; Zhu J; Nyström AM; Pochan DJ; Dorshow RB; Wooley KL J Control Release; 2011 May; 152(1):37-48. PubMed ID: 21241750 [TBL] [Abstract][Full Text] [Related]
2. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Kashyap S; Singh N; Surnar B; Jayakannan M Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038 [TBL] [Abstract][Full Text] [Related]
3. Thiol-functionalized shell crosslinked knedel-like (SCK) nanoparticles: A versatile entry for their conjugation with biomacromolecules. Nyström AM; Wooley KL Tetrahedron; 2008 Sep; 64(36):8543-8552. PubMed ID: 19727320 [TBL] [Abstract][Full Text] [Related]
4. Fabricating core (Au)-shell (different stimuli-responsive polymers) nanoparticles via inverse emulsion polymerization: Comparing DOX release behavior in dark room and under NIR lighting. Mazloomi-Rezvani M; Salami-Kalajahi M; Roghani-Mamaqani H Colloids Surf B Biointerfaces; 2018 Jun; 166():144-151. PubMed ID: 29558705 [TBL] [Abstract][Full Text] [Related]
5. Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug-dependent release, and internalization by multidrug resistant ovarian cancer cells. Baranello MP; Bauer L; Benoit DS Biomacromolecules; 2014 Jul; 15(7):2629-41. PubMed ID: 24955779 [TBL] [Abstract][Full Text] [Related]
6. Construction of thermoresponsive SCKs through tuning the crystalline melting point of the core domain. Nyström AM; Wooley KL Soft Matter; 2008 Mar; 4(4):849-858. PubMed ID: 32907191 [TBL] [Abstract][Full Text] [Related]
7. Development of novel polymeric micellar drug conjugates and nano-containers with hydrolyzable core structure for doxorubicin delivery. Mahmud A; Xiong XB; Lavasanifar A Eur J Pharm Biopharm; 2008 Aug; 69(3):923-34. PubMed ID: 18430550 [TBL] [Abstract][Full Text] [Related]
8. Amphiphilic Diblock Terpolymer PMAgala-b-P(MAA-co-MAChol)s with Attached Galactose and Cholesterol Grafts and Their Intracellular pH-Responsive Doxorubicin Delivery. Wang Z; Luo T; Sheng R; Li H; Sun J; Cao A Biomacromolecules; 2016 Jan; 17(1):98-110. PubMed ID: 26682643 [TBL] [Abstract][Full Text] [Related]
9. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958 [TBL] [Abstract][Full Text] [Related]
10. Core/shell nanoparticles for pH-sensitive delivery of doxorubicin. Oh KS; Um YS; Lee JH; Cho SH; Lee KE; Han SS; Kim D; Yuk SH J Nanosci Nanotechnol; 2010 Oct; 10(10):6967-71. PubMed ID: 21137835 [TBL] [Abstract][Full Text] [Related]
11. pH-Triggered reversible morphological inversion of orthogonally-addressable poly(3-acrylamidophenylboronic acid)-block-poly(acrylamidoethylamine) micelles and their shell crosslinked nanoparticles. Zou J; Zhang S; Shrestha R; Seetho K; Donley CL; Wooley KL J Polym Sci A Polym Chem; 2012 Jan; 3(11):3146-3156. PubMed ID: 23185105 [TBL] [Abstract][Full Text] [Related]
12. A novel delivery system of doxorubicin with high load and pH-responsive release from the nanoparticles of poly (α,β-aspartic acid) derivative. Wang X; Wu G; Lu C; Zhao W; Wang Y; Fan Y; Gao H; Ma J Eur J Pharm Sci; 2012 Aug; 47(1):256-64. PubMed ID: 22522116 [TBL] [Abstract][Full Text] [Related]
13. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions. Liu SQ; Tong YW; Yang YY Biomaterials; 2005 Aug; 26(24):5064-74. PubMed ID: 15769542 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional polymeric micelles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells. Xiong XB; Mahmud A; Uludağ H; Lavasanifar A Pharm Res; 2008 Nov; 25(11):2555-66. PubMed ID: 18636321 [TBL] [Abstract][Full Text] [Related]
16. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. Zhao J; Yan C; Chen Z; Liu J; Song H; Wang W; Liu J; Yang N; Zhao Y; Chen L J Colloid Interface Sci; 2019 Mar; 540():66-77. PubMed ID: 30634060 [TBL] [Abstract][Full Text] [Related]
17. Platinum covalent shell cross-linked micelles designed to deliver doxorubicin for synergistic combination cancer therapy. Zhu C; Xiao J; Tang M; Feng H; Chen W; Du M Int J Nanomedicine; 2017; 12():3697-3710. PubMed ID: 28553108 [TBL] [Abstract][Full Text] [Related]
18. [The characterisitics of temperature/pH sensitive block copolymer micelles in vitro]. Jia L; Qiao MX; Hu HY; Zhao XL; Chen DW Yao Xue Xue Bao; 2011 Jul; 46(7):839-44. PubMed ID: 22010355 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of Functional Nano-objects through RAFT Dispersion Polymerization and Influences of Morphology on Drug Delivery. Qiu L; Xu CR; Zhong F; Hong CY; Pan CY ACS Appl Mater Interfaces; 2016 Jul; 8(28):18347-59. PubMed ID: 27399846 [TBL] [Abstract][Full Text] [Related]