BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21241777)

  • 1. Valproate reduces CHOP levels and preserves oligodendrocytes and axons after spinal cord injury.
    Penas C; Verdú E; Asensio-Pinilla E; Guzmán-Lenis MS; Herrando-Grabulosa M; Navarro X; Casas C
    Neuroscience; 2011 Mar; 178():33-44. PubMed ID: 21241777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats.
    Pannu R; Barbosa E; Singh AK; Singh I
    J Neurosci Res; 2005 Feb; 79(3):340-50. PubMed ID: 15605375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury.
    Iannotti C; Ping Zhang Y; Shields CB; Han Y; Burke DA; Xu XM
    Exp Neurol; 2004 Oct; 189(2):317-32. PubMed ID: 15380482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI.
    Hains BC; Saab CY; Lo AC; Waxman SG
    Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury.
    Casha S; Yu WR; Fehlings MG
    Exp Neurol; 2005 Dec; 196(2):390-400. PubMed ID: 16202410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of intravenous and dietary docosahexaenoic acid significantly improves outcome after spinal cord injury.
    Huang WL; King VR; Curran OE; Dyall SC; Ward RE; Lal N; Priestley JV; Michael-Titus AT
    Brain; 2007 Nov; 130(Pt 11):3004-19. PubMed ID: 17901087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valproic acid attenuates blood-spinal cord barrier disruption by inhibiting matrix metalloprotease-9 activity and improves functional recovery after spinal cord injury.
    Lee JY; Kim HS; Choi HY; Oh TH; Ju BG; Yune TY
    J Neurochem; 2012 Jun; 121(5):818-29. PubMed ID: 22409448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-trauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury.
    Pannu R; Christie DK; Barbosa E; Singh I; Singh AK
    J Neurochem; 2007 Apr; 101(1):182-200. PubMed ID: 17217414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pegylated brain-derived neurotrophic factor shows improved distribution into the spinal cord and stimulates locomotor activity and morphological changes after injury.
    Ankeny DP; McTigue DM; Guan Z; Yan Q; Kinstler O; Stokes BT; Jakeman LB
    Exp Neurol; 2001 Jul; 170(1):85-100. PubMed ID: 11421586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simvastatin treatment improves functional recovery after experimental spinal cord injury by upregulating the expression of BDNF and GDNF.
    Han X; Yang N; Xu Y; Zhu J; Chen Z; Liu Z; Dang G; Song C
    Neurosci Lett; 2011 Jan; 487(3):255-9. PubMed ID: 20851742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroprotective effect of Scutellaria baicalensis on spinal cord injury in rats.
    Yune TY; Lee JY; Cui CM; Kim HC; Oh TH
    J Neurochem; 2009 Aug; 110(4):1276-87. PubMed ID: 19519665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury.
    Cho Y; Shi R; Ivanisevic A; Borgens RB
    J Neurosci Res; 2010 May; 88(7):1433-44. PubMed ID: 19998478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury.
    Sharma HS
    Ann N Y Acad Sci; 2007 Dec; 1122():95-111. PubMed ID: 18077567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective effects of erythropoietin in experimental spinal cord injury by reducing the C/EBP-homologous protein expression.
    Hong Z; Hong H; Chen H; Wang Z; Hong D
    Neurol Res; 2012 Jan; 34(1):85-90. PubMed ID: 22196867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats.
    Novikova LN; Novikov LN; Kellerth JO
    J Comp Neurol; 2002 Oct; 452(3):255-63. PubMed ID: 12353221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acute administration of eicosapentaenoic acid is neuroprotective after spinal cord compression injury in rats.
    Lim SN; Huang W; Hall JC; Ward RE; Priestley JV; Michael-Titus AT
    Prostaglandins Leukot Essent Fatty Acids; 2010; 83(4-6):193-201. PubMed ID: 20833522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of glial proliferation, promotion of axonal growth and myelin production by synthetic glycolipid: A new approach for spinal cord injury treatment.
    García-Álvarez I; Fernández-Mayoralas A; Moreno-Lillo S; Sánchez-Sierra M; Nieto-Sampedro M; Doncel-Pérez E
    Restor Neurol Neurosci; 2015; 33(6):895-910. PubMed ID: 26484699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic alterations in the cellular composition of spinal cord white matter following contusion injury.
    Rosenberg LJ; Zai LJ; Wrathall JR
    Glia; 2005 Jan; 49(1):107-20. PubMed ID: 15390101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of oligodendrocyte precursor cells improves myelination and promotes functional recovery after spinal cord injury.
    Wu B; Sun L; Li P; Tian M; Luo Y; Ren X
    Injury; 2012 Jun; 43(6):794-801. PubMed ID: 22018607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function.
    Guth L; Zhang Z; DiProspero NA; Joubin K; Fitch MT
    Exp Neurol; 1994 Mar; 126(1):76-87. PubMed ID: 8157128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.