These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21242623)

  • 1. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects.
    Chiodarelli N; Masahito S; Kashiwagi Y; Li Y; Arstila K; Richard O; Cott DJ; Heyns M; De Gendt S; Groeseneken G; Vereecken PM
    Nanotechnology; 2011 Feb; 22(8):085302. PubMed ID: 21242623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects.
    Schulze A; Hantschel T; Dathe A; Eyben P; Ke X; Vandervorst W
    Nanotechnology; 2012 Aug; 23(30):305707. PubMed ID: 22781880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition.
    Yuan D; Lin W; Guo R; Wong CP; Das S
    Nanotechnology; 2012 Jun; 23(21):215303. PubMed ID: 22551592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube growth for through silicon via application.
    Xie R; Zhang C; van der Veen MH; Arstila K; Hantschel T; Chen B; Zhong G; Robertson J
    Nanotechnology; 2013 Mar; 24(12):125603. PubMed ID: 23466644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Low Temperature Carbon Nanotube Vertical Interconnects Compatible with Semiconductor Technology.
    Vollebregt S; Ishihara R
    J Vis Exp; 2015 Dec; (106):e53260. PubMed ID: 26709530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube wires and cables: near-term applications and future perspectives.
    Jarosz P; Schauerman C; Alvarenga J; Moses B; Mastrangelo T; Raffaelle R; Ridgley R; Landi B
    Nanoscale; 2011 Nov; 3(11):4542-53. PubMed ID: 21984338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and characterization of horizontally suspended CNTs across TiN electrode gaps.
    Santini CA; Cott DJ; Romo-Negreira A; Capraro BD; Sanseverino SR; De Gendt S; Groeseneken G; Vereecken PM
    Nanotechnology; 2010 Jun; 21(24):245604. PubMed ID: 20498525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotrench for nano and microparticle electrical interconnects.
    Dayen JF; Faramarzi V; Pauly M; Kemp NT; Barbero M; Pichon BP; Majjad H; Begin-Colin S; Doudin B
    Nanotechnology; 2010 Aug; 21(33):335303. PubMed ID: 20660957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly aligned scalable platinum-decorated single-wall carbon nanotube arrays for nanoscale electrical interconnects.
    Kim YL; Li B; An X; Hahm MG; Chen L; Washington M; Ajayan PM; Nayak SK; Busnaina A; Kar S; Jung YJ
    ACS Nano; 2009 Sep; 3(9):2818-26. PubMed ID: 19725514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local synthesis of aligned carbon nanotube bundle arrays by using integrated micro-heaters for interconnect applications.
    Xu T; Miao J; Li H; Wang Z
    Nanotechnology; 2009 Jul; 20(29):295303. PubMed ID: 19567951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Through silicon vias filled with planarized carbon nanotube bundles.
    Wang T; Jeppson K; Olofsson N; Campbell EE; Liu J
    Nanotechnology; 2009 Dec; 20(48):485203. PubMed ID: 19887710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of Joule heating-induced breakdown of carbon nanotube interconnects.
    Santini CA; Vereecken PM; Volodin A; Groeseneken G; De Gendt S; Haesendonck CV
    Nanotechnology; 2011 Sep; 22(39):395202. PubMed ID: 21891859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.
    Atar N; Grossman E; Gouzman I; Bolker A; Hanein Y
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20400-7. PubMed ID: 25366559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled monolayer-assisted chemical transfer of in situ functionalized carbon nanotubes.
    Lin W; Xiu Y; Jiang H; Zhang R; Hildreth O; Moon KS; Wong CP
    J Am Chem Soc; 2008 Jul; 130(30):9636-7. PubMed ID: 18593168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-nanotube through-silicon via interconnects for three-dimensional integration.
    Wang T; Jeppson K; Ye L; Liu J
    Small; 2011 Aug; 7(16):2313-7. PubMed ID: 21692182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-assembled synthesis of carbon nanotubes for interconnects.
    Chen Z; Cao G; Lin Z; Koehler I; Bachmann PK
    Nanotechnology; 2006 Feb; 17(4):1062-6. PubMed ID: 21727382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.
    Guzmán de Villoria R; Figueredo SL; Hart AJ; Steiner SA; Slocum AH; Wardle BL
    Nanotechnology; 2009 Oct; 20(40):405611. PubMed ID: 19752503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.