BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 21242701)

  • 1. Inhibitory effect of canstatin in alkali burn-induced corneal neovascularization.
    Wang Y; Yin H; Chen P; Xie L; Wang Y
    Ophthalmic Res; 2011; 46(2):66-72. PubMed ID: 21242701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasminogen kringle 5 inhibits alkali-burn-induced corneal neovascularization.
    Zhang Z; Ma JX; Gao G; Li C; Luo L; Zhang M; Yang W; Jiang A; Kuang W; Xu L; Chen J; Liu Z
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4062-71. PubMed ID: 16249481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effect of rapamycin on corneal neovascularization in vitro and in vivo.
    Kwon YS; Hong HS; Kim JC; Shin JS; Son Y
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):454-60. PubMed ID: 15671269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KH902, a recombinant human VEGF receptor fusion protein, reduced the level of placental growth factor in alkali burn induced-corneal neovascularization.
    Zhou AY; Bai YJ; Zhao M; Yu WZ; Li XX
    Ophthalmic Res; 2013; 50(3):180-6. PubMed ID: 24008241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. αA-crystallin in the pathogenesis and intervention of experimental murine corneal neovascularization.
    Zhu W; Qi X; Ren S; Jia C; Song Z; Wang Y
    Exp Eye Res; 2012 May; 98():44-51. PubMed ID: 22465406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of TC14012 on alkali burn-induced corneal neovascularization in mice.
    Shen M; Yuan F; Jin J; Yuan Y
    Ophthalmic Res; 2014; 52(1):17-24. PubMed ID: 24853648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization.
    Jia C; Zhu W; Ren S; Xi H; Li S; Wang Y
    Mol Vis; 2011; 17():2386-99. PubMed ID: 21921991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of alkali burn-induced corneal neovascularization by dendritic cell vaccination targeting VEGF receptor 2.
    Mochimaru H; Usui T; Yaguchi T; Nagahama Y; Hasegawa G; Usui Y; Shimmura S; Tsubota K; Amano S; Kawakami Y; Ishida S
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):2172-7. PubMed ID: 18263815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen and N-acetyl-L-cysteine rescue oxidative stress-induced angiogenesis in a mouse corneal alkali-burn model.
    Kubota M; Shimmura S; Kubota S; Miyashita H; Kato N; Noda K; Ozawa Y; Usui T; Ishida S; Umezawa K; Kurihara T; Tsubota K
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):427-33. PubMed ID: 20847117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of integrin alpha5beta1 in the regulation of corneal neovascularization.
    Muether PS; Dell S; Kociok N; Zahn G; Stragies R; Vossmeyer D; Joussen AM
    Exp Eye Res; 2007 Sep; 85(3):356-65. PubMed ID: 17659277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effect of sub-conjunctival tocilizumab on alkali burn induced corneal neovascularization in rats.
    Sari ES; Yazici A; Aksit H; Yay A; Sahin G; Yildiz O; Ermis SS; Seyrek K; Yalcin B
    Curr Eye Res; 2015 Jan; 40(1):48-55. PubMed ID: 24910898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A siRNA targeting vascular endothelial growth factor-A inhibiting experimental corneal neovascularization.
    Zuo L; Fan Y; Wang F; Gu Q; Xu X
    Curr Eye Res; 2010 May; 35(5):375-84. PubMed ID: 20450250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of corneal angiogenesis by local application of vasostatin.
    Wu PC; Yang LC; Kuo HK; Huang CC; Tsai CL; Lin PR; Wu PC; Shin SJ; Tai MH
    Mol Vis; 2005 Jan; 11():28-35. PubMed ID: 15660022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkali burn to the eye: protection using TNF-α inhibition.
    Cade F; Paschalis EI; Regatieri CV; Vavvas DG; Dana R; Dohlman CH
    Cornea; 2014 Apr; 33(4):382-9. PubMed ID: 24488127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-β1/ERK pathways regulation.
    Shin YJ; Hyon JY; Choi WS; Yi K; Chung ES; Chung TY; Wee WR
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):4452-8. PubMed ID: 23716625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doxycycline enhances the inhibitory effects of bevacizumab on corneal neovascularization and prevents its side effects.
    Su W; Li Z; Li Y; Lin M; Yao L; Liu Y; He Z; Wu C; Liang D
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9108-15. PubMed ID: 22039247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allograft survival enhancement using doxycycline in alkali-burned mouse corneas.
    Ling S; Li W; Liu L; Zhou H; Wang T; Ye H; Liang L; Yuan J
    Acta Ophthalmol; 2013 Aug; 91(5):e369-78. PubMed ID: 23387987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist.
    Lu P; Li L; Liu G; Zhang X; Mukaida N
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4761-8. PubMed ID: 19458323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of integrins and MMPs during alkaline-burn-induced corneal angiogenesis.
    Zhang H; Li C; Baciu PC
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):955-62. PubMed ID: 11923234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effect of curcumin on corneal neovascularization in vitro and in vivo.
    Bian F; Zhang MC; Zhu Y
    Ophthalmologica; 2008; 222(3):178-86. PubMed ID: 18497527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.