BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 2124278)

  • 1. Discrimination between adaptive and neutral amino acid substitutions in vertebrate hemoglobins.
    Horimoto K; Suzuki H; Otsuka J
    J Mol Evol; 1990 Oct; 31(4):302-24. PubMed ID: 2124278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergence pattern and selective mode in protein evolution: the example of vertebrate myoglobins and hemoglobin chains.
    Otsuka J; Miyazaki K; Horimoto K
    J Mol Evol; 1993 Feb; 36(2):153-81. PubMed ID: 8433384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A "living fossil" sequence: primary structure of the coelacanth (Latimeria chalumnae) hemoglobin--evolutionary and functional aspects.
    Gorr T; Kleinschmidt T; Sgouros JG; Kasang L
    Biol Chem Hoppe Seyler; 1991 Aug; 372(8):599-612. PubMed ID: 1958318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional similarity and structural diversity of human and cartilaginous fish hemoglobins.
    Naoi Y; Chong KT; Yoshimatsu K; Miyazaki G; Tame JR; Park SY; Adachi S; Morimoto H
    J Mol Biol; 2001 Mar; 307(1):259-70. PubMed ID: 11243818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoglobin function in the vertebrates: an evolutionary model.
    Coates ML
    J Mol Evol; 1975 Dec; 6(4):285-307. PubMed ID: 1543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conserved Phe GH5 of importance for hemoglobin intersubunit contact is mutated in gadoid fish.
    Andersen Ø; De Rosa MC; Yadav P; Pirolli D; Fernandes JM; Berg PR; Jentoft S; Andrè C
    BMC Evol Biol; 2014 Mar; 14(1):54. PubMed ID: 24655798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei).
    Stam WT; Beintema JJ; D'Avino R; Tamburrini M; di Prisco G
    J Mol Evol; 1997 Oct; 45(4):437-45. PubMed ID: 9321422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species adaptation in a protein molecule.
    Perutz MF
    Mol Biol Evol; 1983 Dec; 1(1):1-28. PubMed ID: 6400645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparative Genomic Survey Provides Novel Insights into Molecular Evolution of l-Aromatic Amino Acid Decarboxylase in Vertebrates.
    Li Y; Lv Y; Bian C; You X; Deng L; Shi Q
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29659490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amino acid sequence of the single hemoglobin of the high-antarctic fish Bathydraco marri Norman.
    Caruso C; Rutigliano B; Riccio A; Kunzmann A; di Prisco G
    Comp Biochem Physiol B; 1992 Aug; 102(4):941-6. PubMed ID: 1395518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution of the hemoglobin gene family across vertebrates.
    Mao Y; Peng T; Shao F; Zhao Q; Peng Z
    Genetica; 2023 Jun; 151(3):201-213. PubMed ID: 37069365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amino acid sequences of two alpha chains of hemoglobins from Komodo dragon Varanus komodoensis and phylogenetic relationships of amniotes.
    Fushitani K; Higashiyama K; Moriyama EN; Imai K; Hosokawa K
    Mol Biol Evol; 1996 Sep; 13(7):1039-43. PubMed ID: 8752011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.
    Schwarze K; Burmester T
    Biochim Biophys Acta; 2013 Sep; 1834(9):1801-12. PubMed ID: 23360762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni.
    Caruso C; Rutigliano B; Romano M; di Prisco G
    Biochim Biophys Acta; 1991 Jun; 1078(2):273-82. PubMed ID: 2065095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the embryonic globin chains of the marsupial Tammar wallaby, Macropus eugenii.
    Holland RA; Gooley AA
    Eur J Biochem; 1997 Sep; 248(3):864-71. PubMed ID: 9342240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and characterization of adult Sparus aurata hemoglobin genes.
    Campo S; Nastasi G; Fedeli D; D'Ascola A; Campo GM; Avenoso A; Ferlazzo A; Calatroni A; Falcioni G
    OMICS; 2010 Apr; 14(2):187-200. PubMed ID: 20210659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates.
    Xu X; Zhang SS; Barnstable CJ; Tombran-Tink J
    BMC Genomics; 2006 Oct; 7():248. PubMed ID: 17020603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative aspects of luteinizing hormone-releasing hormone structure and function in vertebrate phylogeny.
    King JA; Millar RP
    Endocrinology; 1980 Mar; 106(3):707-17. PubMed ID: 6986260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin of the adult white stork (Ciconia ciconia, ciconiiformes). The primary structure of alpha A- and beta-chains from the only present hemoglobin component.
    Godovac-Zimmermann J; Braunitzer G
    Hoppe Seylers Z Physiol Chem; 1984 Sep; 365(9):1107-13. PubMed ID: 6500517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular evolution of olfactomedin.
    Karavanich CA; Anholt RR
    Mol Biol Evol; 1998 Jun; 15(6):718-26. PubMed ID: 9615453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.