These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2124278)

  • 1. Discrimination between adaptive and neutral amino acid substitutions in vertebrate hemoglobins.
    Horimoto K; Suzuki H; Otsuka J
    J Mol Evol; 1990 Oct; 31(4):302-24. PubMed ID: 2124278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergence pattern and selective mode in protein evolution: the example of vertebrate myoglobins and hemoglobin chains.
    Otsuka J; Miyazaki K; Horimoto K
    J Mol Evol; 1993 Feb; 36(2):153-81. PubMed ID: 8433384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A "living fossil" sequence: primary structure of the coelacanth (Latimeria chalumnae) hemoglobin--evolutionary and functional aspects.
    Gorr T; Kleinschmidt T; Sgouros JG; Kasang L
    Biol Chem Hoppe Seyler; 1991 Aug; 372(8):599-612. PubMed ID: 1958318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional similarity and structural diversity of human and cartilaginous fish hemoglobins.
    Naoi Y; Chong KT; Yoshimatsu K; Miyazaki G; Tame JR; Park SY; Adachi S; Morimoto H
    J Mol Biol; 2001 Mar; 307(1):259-70. PubMed ID: 11243818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoglobin function in the vertebrates: an evolutionary model.
    Coates ML
    J Mol Evol; 1975 Dec; 6(4):285-307. PubMed ID: 1543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conserved Phe GH5 of importance for hemoglobin intersubunit contact is mutated in gadoid fish.
    Andersen Ø; De Rosa MC; Yadav P; Pirolli D; Fernandes JM; Berg PR; Jentoft S; Andrè C
    BMC Evol Biol; 2014 Mar; 14(1):54. PubMed ID: 24655798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei).
    Stam WT; Beintema JJ; D'Avino R; Tamburrini M; di Prisco G
    J Mol Evol; 1997 Oct; 45(4):437-45. PubMed ID: 9321422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species adaptation in a protein molecule.
    Perutz MF
    Mol Biol Evol; 1983 Dec; 1(1):1-28. PubMed ID: 6400645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparative Genomic Survey Provides Novel Insights into Molecular Evolution of l-Aromatic Amino Acid Decarboxylase in Vertebrates.
    Li Y; Lv Y; Bian C; You X; Deng L; Shi Q
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29659490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amino acid sequence of the single hemoglobin of the high-antarctic fish Bathydraco marri Norman.
    Caruso C; Rutigliano B; Riccio A; Kunzmann A; di Prisco G
    Comp Biochem Physiol B; 1992 Aug; 102(4):941-6. PubMed ID: 1395518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution of the hemoglobin gene family across vertebrates.
    Mao Y; Peng T; Shao F; Zhao Q; Peng Z
    Genetica; 2023 Jun; 151(3):201-213. PubMed ID: 37069365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amino acid sequences of two alpha chains of hemoglobins from Komodo dragon Varanus komodoensis and phylogenetic relationships of amniotes.
    Fushitani K; Higashiyama K; Moriyama EN; Imai K; Hosokawa K
    Mol Biol Evol; 1996 Sep; 13(7):1039-43. PubMed ID: 8752011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.
    Schwarze K; Burmester T
    Biochim Biophys Acta; 2013 Sep; 1834(9):1801-12. PubMed ID: 23360762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni.
    Caruso C; Rutigliano B; Romano M; di Prisco G
    Biochim Biophys Acta; 1991 Jun; 1078(2):273-82. PubMed ID: 2065095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the embryonic globin chains of the marsupial Tammar wallaby, Macropus eugenii.
    Holland RA; Gooley AA
    Eur J Biochem; 1997 Sep; 248(3):864-71. PubMed ID: 9342240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning and characterization of adult Sparus aurata hemoglobin genes.
    Campo S; Nastasi G; Fedeli D; D'Ascola A; Campo GM; Avenoso A; Ferlazzo A; Calatroni A; Falcioni G
    OMICS; 2010 Apr; 14(2):187-200. PubMed ID: 20210659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular phylogeny of the antiangiogenic and neurotrophic serpin, pigment epithelium derived factor in vertebrates.
    Xu X; Zhang SS; Barnstable CJ; Tombran-Tink J
    BMC Genomics; 2006 Oct; 7():248. PubMed ID: 17020603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative aspects of luteinizing hormone-releasing hormone structure and function in vertebrate phylogeny.
    King JA; Millar RP
    Endocrinology; 1980 Mar; 106(3):707-17. PubMed ID: 6986260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin of the adult white stork (Ciconia ciconia, ciconiiformes). The primary structure of alpha A- and beta-chains from the only present hemoglobin component.
    Godovac-Zimmermann J; Braunitzer G
    Hoppe Seylers Z Physiol Chem; 1984 Sep; 365(9):1107-13. PubMed ID: 6500517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular evolution of olfactomedin.
    Karavanich CA; Anholt RR
    Mol Biol Evol; 1998 Jun; 15(6):718-26. PubMed ID: 9615453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.