BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 2124278)

  • 21. Analysis of the exon-intron structures of fish, amphibian, bird and mammalian hatching enzyme genes, with special reference to the intron loss evolution of hatching enzyme genes in Teleostei.
    Kawaguchi M; Yasumasu S; Hiroi J; Naruse K; Suzuki T; Iuchi I
    Gene; 2007 May; 392(1-2):77-88. PubMed ID: 17222522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenetic origins and adaptive evolution of avian and mammalian haemoglobin genes.
    Czelusniak J; Goodman M; Hewett-Emmett D; Weiss ML; Venta PJ; Tashian RE
    Nature; 1982 Jul; 298(5871):297-300. PubMed ID: 6178039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Axolotl hemoglobin: cDNA-derived amino acid sequences of two alpha globins and a beta globin from an adult Ambystoma mexicanum.
    Shishikura F; Takeuchi HA; Nagai T
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Nov; 142(3):258-68. PubMed ID: 16143550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolution of N-terminal sequences of the vertebrate HOXA13 protein.
    Mortlock DP; Sateesh P; Innis JW
    Mamm Genome; 2000 Feb; 11(2):151-8. PubMed ID: 10656931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary analysis of the segment from helix 3 through helix 5 in vertebrate progesterone receptors.
    Baker ME; Uh KY
    J Steroid Biochem Mol Biol; 2012 Oct; 132(1-2):32-40. PubMed ID: 22575083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence analysis of teleost retina-specific lactate dehydrogenase C: evolutionary implications for the vertebrate lactate dehydrogenase gene family.
    Quattro JM; Woods HA; Powers DA
    Proc Natl Acad Sci U S A; 1993 Jan; 90(1):242-6. PubMed ID: 8419929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins.
    Reischl E; Dafre AL; Franco JL; Wilhelm Filho D
    Comp Biochem Physiol C Toxicol Pharmacol; 2007; 146(1-2):22-53. PubMed ID: 17368111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disparity in the timing of vertebrate diversification events between the northern and southern hemispheres.
    Tingley R; Dubey S
    BMC Evol Biol; 2012 Dec; 12():244. PubMed ID: 23241454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Globin evolution was apparently very rapid in early vertebrates: a reasonable case against the rate-constancy hypothesis.
    Goodman M
    J Mol Evol; 1981; 17(2):114-20. PubMed ID: 7253036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes.
    Meyne J; Baker RJ; Hobart HH; Hsu TC; Ryder OA; Ward OG; Wiley JE; Wurster-Hill DH; Yates TL; Moyzis RK
    Chromosoma; 1990 Apr; 99(1):3-10. PubMed ID: 2340757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vertebrate beta-thymosins: conserved synteny reveals the relationship between those of bony fish and of land vertebrates.
    Edwards J
    FEBS Lett; 2010 Mar; 584(5):1047-53. PubMed ID: 20138884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings.
    Natarajan C; Hoffmann FG; Weber RE; Fago A; Witt CC; Storz JF
    Science; 2016 Oct; 354(6310):336-339. PubMed ID: 27846568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemokines.
    Laing KJ; Secombes CJ
    Dev Comp Immunol; 2004 May; 28(5):443-60. PubMed ID: 15062643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish.
    Zimek A; Weber K
    Eur J Cell Biol; 2005 Jun; 84(6):623-35. PubMed ID: 16032930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Hemoglobins of thecommon starling (Sturnus vulgaris, Passeriformes). The primary structures of the alphaA, alphaD and beta chains].
    Oberthür W; Braunitzer G
    Hoppe Seylers Z Physiol Chem; 1984 Feb; 365(2):159-73. PubMed ID: 6714943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The rhodopsin-encoding gene of bony fish lacks introns.
    Fitzgibbon J; Hope A; Slobodyanyuk SJ; Bellingham J; Bowmaker JK; Hunt DM
    Gene; 1995 Oct; 164(2):273-7. PubMed ID: 7590342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The hemoglobins of the sub-Antarctic fish Cottoperca gobio, a phyletically basal species--oxygen-binding equilibria, kinetics and molecular dynamics.
    Giordano D; Boechi L; Vergara A; Martí MA; Samuni U; Dantsker D; Grassi L; Estrin DA; Friedman JM; Mazzarella L; di Prisco G; Verde C
    FEBS J; 2009 Apr; 276(8):2266-77. PubMed ID: 19292863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The comparative characteristics of the physicochemical and structural-functional properties of hemoglobin in a number of vertebrates].
    Konoshenko SV; Rakhman A
    Zh Evol Biokhim Fiziol; 1994; 30(5):683-9. PubMed ID: 8721312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The amino acid sequence and oxygen-binding properties of the single hemoglobin of the cold-adapted Antarctic teleost Gymnodraco acuticeps.
    Tamburrini M; Brancaccio A; Ippoliti R; di Prisco G
    Arch Biochem Biophys; 1992 Jan; 292(1):295-302. PubMed ID: 1727645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary relationships of lactate dehydrogenases (LDHs) from mammals, birds, an amphibian, fish, barley, and bacteria: LDH cDNA sequences from Xenopus, pig, and rat.
    Tsuji S; Qureshi MA; Hou EW; Fitch WM; Li SS
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9392-6. PubMed ID: 7937776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.