BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 2124279)

  • 1. Prokaryotic and eukaryotic pyridoxal-dependent decarboxylases are homologous.
    Jackson FR
    J Mol Evol; 1990 Oct; 31(4):325-9. PubMed ID: 2124279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases.
    Sandmeier E; Hale TI; Christen P
    Eur J Biochem; 1994 May; 221(3):997-1002. PubMed ID: 8181483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and properties of pyridoxal-5'-phosphate-dependent histidine decarboxylases from Klebsiella planticola and Enterobacter aerogenes.
    Guirard BM; Snell EE
    J Bacteriol; 1987 Sep; 169(9):3963-8. PubMed ID: 3114230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural motifs for pyridoxal-5'-phosphate binding in decarboxylases: an analysis based on the crystal structure of the Lactobacillus 30a ornithine decarboxylase.
    Momany C; Ghosh R; Hackert ML
    Protein Sci; 1995 May; 4(5):849-54. PubMed ID: 7663340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarity between serine hydroxymethyltransferase and other pyridoxal phosphate-dependent enzymes.
    Pascarella S; Schirch V; Bossa F
    FEBS Lett; 1993 Sep; 331(1-2):145-9. PubMed ID: 8405393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the mouse acidic amino acid decarboxylase GADL1.
    Raasakka A; Mahootchi E; Winge I; Luan W; Kursula P; Haavik J
    Acta Crystallogr F Struct Biol Commun; 2018 Jan; 74(Pt 1):65-73. PubMed ID: 29372909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary Profiling of Group II Pyridoxal-Phosphate-Dependent Decarboxylases Suggests Expansion and Functional Diversification of Histidine Decarboxylases in Tomato.
    Kumar R; Jiwani G; Pareek A; SravanKumar T; Khurana A; Sharma AK
    Plant Genome; 2016 Mar; 9(1):. PubMed ID: 27898758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of antibody reactivity against cysteine sulfinic acid decarboxylase, a pyridoxal phosphate-dependent enzyme, in endocrine autoimmune disease.
    Sköldberg F; Rorsman F; Perheentupa J; Landin-Olsson M; Husebye ES; Gustafsson J; Kämpe O
    J Clin Endocrinol Metab; 2004 Apr; 89(4):1636-40. PubMed ID: 15070923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cDNA cloning of L-dopa decarboxylase from the eclosion stage of the insect Ceratitis capitata. Evolutionary relationship to other species decarboxylases.
    Mantzouridis TD; Sideris DC; Fragoulis EG
    Gene; 1997 Dec; 204(1-2):85-9. PubMed ID: 9434169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Insights Emerging from Recent Investigations on Human Group II Pyridoxal 5'-Phosphate Decarboxylases.
    Paiardini A; Giardina G; Rossignoli G; Voltattorni CB; Bertoldi M
    Curr Med Chem; 2017; 24(3):226-244. PubMed ID: 27881066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes at a molecular level.
    Smith DM; Thomas NR; Gani D
    Experientia; 1991 Dec; 47(11-12):1104-18. PubMed ID: 1765122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen reactivity with pyridoxal 5'-phosphate enzymes: biochemical implications and functional relevance.
    Bisello G; Longo C; Rossignoli G; Phillips RS; Bertoldi M
    Amino Acids; 2020 Aug; 52(8):1089-1105. PubMed ID: 32844248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diverse functional evolution of serine decarboxylases: identification of two novel acetaldehyde synthases that uses hydrophobic amino acids as substrates.
    Torrens-Spence MP; von Guggenberg R; Lazear M; Ding H; Li J
    BMC Plant Biol; 2014 Sep; 14():247. PubMed ID: 25230835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.
    Liu P; Torrens-Spence MP; Ding H; Christensen BM; Li J
    Amino Acids; 2013 Feb; 44(2):391-404. PubMed ID: 22718265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and substrate specificity determinants of the taurine biosynthetic enzyme cysteine sulphinic acid decarboxylase.
    Mahootchi E; Raasakka A; Luan W; Muruganandam G; Loris R; Haavik J; Kursula P
    J Struct Biol; 2021 Mar; 213(1):107674. PubMed ID: 33253877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similarity between pyridoxal/pyridoxamine phosphate-dependent enzymes involved in dideoxy and deoxyaminosugar biosynthesis and other pyridoxal phosphate enzymes.
    Pascarella S; Bossa F
    Protein Sci; 1994 Apr; 3(4):701-5. PubMed ID: 8003988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence analysis of the gene encoding a novel L-2,4-diaminobutyrate decarboxylase of Acinetobacter baumannii: similarity to the group II amino acid decarboxylases.
    Ikai H; Yamamoto S
    Arch Microbiol; 1996 Aug; 166(2):128-31. PubMed ID: 8772175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a pyridoxal-5'-phosphate-dependent l-lysine decarboxylase/oxidase from Burkholderia sp. AIU 395.
    Sugawara A; Matsui D; Takahashi N; Yamada M; Asano Y; Isobe K
    J Biosci Bioeng; 2014 Nov; 118(5):496-501. PubMed ID: 24863180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structure of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica.
    Cheong CG; Bauer CB; Brushaber KR; Escalante-Semerena JC; Rayment I
    Biochemistry; 2002 Apr; 41(15):4798-808. PubMed ID: 11939774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyridoxal 5'-phosphate dependent histidine decarboxylase: overproduction, purification, biosynthesis of soluble site-directed mutant proteins, and replacement of conserved residues.
    Vaaler GL; Snell EE
    Biochemistry; 1989 Sep; 28(18):7306-13. PubMed ID: 2684275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.