BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21243096)

  • 1. Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 2: Behavior in solution.
    Shtykova EV; Malyutin A; Dyke J; Stein B; Konarev PV; Dragnea B; Svergun DI; Bronstein LM
    J Phys Chem C Nanomater Interfaces; 2010 Dec; 114(50):21908-21913. PubMed ID: 21243096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 1: The Influence of the Grafting.
    Bronstein LM; Shtykova EV; Malyutin A; Dyke JC; Gunn E; Gao X; Stein B; Konarev PV; Dragnea B; Svergun DI
    J Phys Chem C Nanomater Interfaces; 2010 Dec; 114(50):21900-21907. PubMed ID: 21221425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophilic Monodisperse Magnetic Nanoparticles Protected by an Amphiphilic Alternating Copolymer.
    Shtykova EV; Huang X; Gao X; Dyke JC; Schmucker AL; Dragnea B; Remmes N; Baxter DV; Stein B; Konarev PV; Svergun DI; Bronstein LM
    J Phys Chem C Nanomater Interfaces; 2008; 112(43):16809-16817. PubMed ID: 19194520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coat Protein-Dependent Behavior of Poly(ethylene glycol) Tails in Iron Oxide Core Virus-like Nanoparticles.
    Malyutin AG; Cheng H; Sanchez-Felix OR; Carlson K; Stein BD; Konarev PV; Svergun DI; Dragnea B; Bronstein LM
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12089-98. PubMed ID: 25989427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-Shell Structure of Monodisperse Poly(ethylene glycol)-Grafted Iron Oxide Nanoparticles Studied by Small-Angle X-ray Scattering.
    Grünewald TA; Lassenberger A; van Oostrum PD; Rennhofer H; Zirbs R; Capone B; Vonderhaid I; Amenitsch H; Lichtenegger HC; Reimhult E
    Chem Mater; 2015 Jul; 27(13):4763-4771. PubMed ID: 26321792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: Beyond a paradigm.
    Venuta A; Moret F; Dal Poggetto G; Esposito D; Fraix A; Avitabile C; Ungaro F; Malinconico M; Sortino S; Romanelli A; Laurienzo P; Reddi E; Quaglia F
    Eur J Pharm Sci; 2018 Jan; 111():177-185. PubMed ID: 28966100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of High-Yield Purification Methods on Monodisperse PEG-Grafted Iron Oxide Nanoparticles.
    Lassenberger A; Bixner O; Gruenewald T; Lichtenegger H; Zirbs R; Reimhult E
    Langmuir; 2016 May; 32(17):4259-69. PubMed ID: 27046133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.
    Gillich T; Acikgöz C; Isa L; Schlüter AD; Spencer ND; Textor M
    ACS Nano; 2013 Jan; 7(1):316-29. PubMed ID: 23214719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melt-grafting for the synthesis of core-shell nanoparticles with ultra-high dispersant density.
    Zirbs R; Lassenberger A; Vonderhaid I; Kurzhals S; Reimhult E
    Nanoscale; 2015 Jul; 7(25):11216-25. PubMed ID: 26061616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the Polymer Architecture on the Structural and Biophysical Properties of PEG-PLA Nanoparticles.
    Rabanel JM; Faivre J; Tehrani SF; Lalloz A; Hildgen P; Banquy X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10374-85. PubMed ID: 25909493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of poly(ethylene glycol) grafting density on the tumor targeting efficacy of nanoparticles with ligand modification.
    Zhang S; Tang C; Yin C
    Drug Deliv; 2015 Feb; 22(2):182-90. PubMed ID: 24215373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of iron oxide-poly(ethylene glycol) core-shell nanoparticles at liquid-liquid interfaces.
    Isa L; Amstad E; Textor M; Reimhult E
    Chimia (Aarau); 2010; 64(3):145-9. PubMed ID: 21140907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ethylene glycol) conjugated poly(lactide)-based polyelectrolytes: synthesis and formation of stable self-assemblies induced by stereocomplexation.
    Li Z; Yuan D; Fan X; Tan BH; He C
    Langmuir; 2015 Mar; 31(8):2321-33. PubMed ID: 25661108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene-alt-maleic anhydride) in aqueous solutions.
    Lin Y; Genzer J; Li W; Qiao R; Dickey MD; Tang SY
    Nanoscale; 2018 Nov; 10(42):19871-19878. PubMed ID: 30335111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering.
    Szymusiak M; Kalkowski J; Luo H; Donovan AJ; Zhang P; Liu C; Shang W; Irving T; Herrera-Alonso M; Liu Y
    ACS Macro Lett; 2017 Sep; 6(9):1005-1012. PubMed ID: 29308298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Engineered Nanomaterials in Water: Understanding Critical Dynamics of Soft Organic Coatings and Relative Aggregation Density.
    Kim C; Fortner JD
    Environ Sci Technol; 2020 Nov; 54(21):13548-13555. PubMed ID: 33054202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interrogating the relationship between the microstructure of amphiphilic poly(ethylene glycol-b-caprolactone) copolymers and their colloidal assemblies using non-interfering techniques.
    Faisal KS; Clulow AJ; Krasowska M; Gillam T; Miklavcic SJ; Williamson NH; Blencowe A
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1140-1152. PubMed ID: 34492457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Small-Angle Neutron Scattering/Small-Angle X-ray Scattering Analysis for the Characterization of Silver Nanoparticles Prepared via Photoreduction in Water-in-Oil Microemulsions.
    Harada M; Yamamoto M; Iwase H
    Langmuir; 2021 Nov; 37(44):13085-13098. PubMed ID: 34714093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.