BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21243153)

  • 1. Product formation in rhodopsin by fast hydrogen motions.
    Weingart O; Altoè P; Stenta M; Bottoni A; Orlandi G; Garavelli M
    Phys Chem Chem Phys; 2011 Mar; 13(9):3645-8. PubMed ID: 21243153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoisomerization mechanism of 11-cis-locked artificial retinal chromophores: acceleration and primary photoproduct assignment.
    De Vico L; Garavelli M; Bernardi F; Olivucci M
    J Am Chem Soc; 2005 Mar; 127(8):2433-42. PubMed ID: 15724998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluoro derivatives of retinal illuminate the decisive role of the C(12)-H element in photoisomerization and rhodopsin activation.
    Bovee-Geurts PH; Fernández Fernández I; Liu RS; Mathies RA; Lugtenburg J; Degrip WJ
    J Am Chem Soc; 2009 Dec; 131(49):17933-42. PubMed ID: 19995077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy.
    Rupenyan A; van Stokkum IH; Arents JC; van Grondelle R; Hellingwerf KJ; Groot ML
    J Phys Chem B; 2009 Dec; 113(50):16251-6. PubMed ID: 19928893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal.
    Chung WC; Nanbu S; Ishida T
    J Phys Chem A; 2010 Aug; 114(32):8190-201. PubMed ID: 20666503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation.
    Hayashi S; Tajkhorshid E; Schulten K
    Biophys J; 2009 Jan; 96(2):403-16. PubMed ID: 19167292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QM/MM trajectory surface hopping approach to photoisomerization of rhodopsin and isorhodopsin: the origin of faster and more efficient isomerization for rhodopsin.
    Chung WC; Nanbu S; Ishida T
    J Phys Chem B; 2012 Jul; 116(28):8009-23. PubMed ID: 22783826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum coherence effects in natural light-induced processes: cis-trans photoisomerization of model retinal under incoherent excitation.
    Tscherbul TV; Brumer P
    Phys Chem Chem Phys; 2015 Dec; 17(46):30904-13. PubMed ID: 26022517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex thermal behavior of 11-cis-retinal, the ligand of the visual pigments.
    Silva López C; Alvarez R; Domínguez M; Nieto Faza O; de Lera AR
    J Org Chem; 2009 Feb; 74(3):1007-13. PubMed ID: 19178351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavepacket splitting and two-pathway deactivation in the photoexcited visual pigment isorhodopsin.
    Polli D; Weingart O; Brida D; Poli E; Maiuri M; Spillane KM; Bottoni A; Kukura P; Mathies RA; Cerullo G; Garavelli M
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2504-7. PubMed ID: 24481600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman.
    Kukura P; McCamant DW; Yoon S; Wandschneider DB; Mathies RA
    Science; 2005 Nov; 310(5750):1006-9. PubMed ID: 16284176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conical intersection dynamics of the primary photoisomerization event in vision.
    Polli D; Altoè P; Weingart O; Spillane KM; Manzoni C; Brida D; Tomasello G; Orlandi G; Kukura P; Mathies RA; Garavelli M; Cerullo G
    Nature; 2010 Sep; 467(7314):440-3. PubMed ID: 20864998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational studies of the primary phototransduction event in visual rhodopsin.
    Gascón JA; Sproviero EM; Batista VS
    Acc Chem Res; 2006 Mar; 39(3):184-93. PubMed ID: 16548507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The twisted C11=C12 bond of the rhodopsin chromophore--a photochemical hot spot.
    Weingart O
    J Am Chem Soc; 2007 Sep; 129(35):10618-9. PubMed ID: 17691730
    [No Abstract]   [Full Text] [Related]  

  • 16. Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1.
    Schnedermann C; Muders V; Ehrenberg D; Schlesinger R; Kukura P; Heberle J
    J Am Chem Soc; 2016 Apr; 138(14):4757-62. PubMed ID: 26999496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin.
    Kochendoerfer GG; Verdegem PJ; van der Hoef I; Lugtenburg J; Mathies RA
    Biochemistry; 1996 Dec; 35(50):16230-40. PubMed ID: 8973196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory.
    Ferré N; Olivucci M
    J Am Chem Soc; 2003 Jun; 125(23):6868-9. PubMed ID: 12783530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward an understanding of the retinal chromophore in rhodopsin mimics.
    Huntress MM; Gozem S; Malley KR; Jailaubekov AE; Vasileiou C; Vengris M; Geiger JH; Borhan B; Schapiro I; Larsen DS; Olivucci M
    J Phys Chem B; 2013 Sep; 117(35):10053-70. PubMed ID: 23971945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between the excited state relaxation paths of rhodopsin and isorhodopsin.
    Strambi A; Coto PB; Frutos LM; Ferré N; Olivucci M
    J Am Chem Soc; 2008 Mar; 130(11):3382-8. PubMed ID: 18302369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.