These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 21243424)
1. Remote sensing as a tool for monitoring water quality parameters for Mediterranean Lakes of European Union water framework directive (WFD) and as a system of surveillance of cyanobacterial harmful algae blooms (SCyanoHABs). Gómez JA; Alonso CA; García AA Environ Monit Assess; 2011 Oct; 181(1-4):317-34. PubMed ID: 21243424 [TBL] [Abstract][Full Text] [Related]
2. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes. Cook KV; Beyer JE; Xiao X; Hambright KD Water Res; 2023 Aug; 242():120076. PubMed ID: 37352675 [TBL] [Abstract][Full Text] [Related]
3. Assessing remotely sensed chlorophyll-a for the implementation of the Water Framework Directive in European perialpine lakes. Bresciani M; Stroppiana D; Odermatt D; Morabito G; Giardino C Sci Total Environ; 2011 Aug; 409(17):3083-91. PubMed ID: 21632091 [TBL] [Abstract][Full Text] [Related]
4. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing. Gorham T; Jia Y; Shum CK; Lee J Harmful Algae; 2017 Jun; 66():13-19. PubMed ID: 28602249 [TBL] [Abstract][Full Text] [Related]
5. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor. Medina-Cobo M; Domínguez JA; Quesada A; de Hoyos C Water Res; 2014 Oct; 63():10-20. PubMed ID: 24971813 [TBL] [Abstract][Full Text] [Related]
6. Identifying lakes at risk of toxic cyanobacterial blooms using satellite imagery and field surveys across the United States. Handler AM; Compton JE; Hill RA; Leibowitz SG; Schaeffer BA Sci Total Environ; 2023 Apr; 869():161784. PubMed ID: 36702268 [TBL] [Abstract][Full Text] [Related]
8. Benefits and limitations of an intercalibration of phytoplankton assessment methods based on the Mediterranean GIG reservoir experience. Pahissa J; Catalan J; Morabito G; Dörflinger G; Ferreira J; Laplace-Treyture C; Gîrbea R; Marchetto A; Polykarpou P; de Hoyos C Sci Total Environ; 2015 Dec; 538():169-79. PubMed ID: 26298850 [TBL] [Abstract][Full Text] [Related]
9. A Multiscale Mapping Assessment of Lake Champlain Cyanobacterial Harmful Algal Blooms. Torbick N; Corbiere M Int J Environ Res Public Health; 2015 Sep; 12(9):11560-78. PubMed ID: 26389930 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203 [TBL] [Abstract][Full Text] [Related]
11. Remote sensing for mapping algal blooms in freshwater lakes: a review. Rolim SBA; Veettil BK; Vieiro AP; Kessler AB; Gonzatti C Environ Sci Pollut Res Int; 2023 Feb; 30(8):19602-19616. PubMed ID: 36642774 [TBL] [Abstract][Full Text] [Related]
12. Spatial and temporal patterns in the seasonal distribution of toxic cyanobacteria in Western Lake Erie from 2002-2014. Wynne TT; Stumpf RP Toxins (Basel); 2015 May; 7(5):1649-63. PubMed ID: 25985390 [TBL] [Abstract][Full Text] [Related]
13. Remote sensing of cyanobacterial blooms in a hypertrophic lagoon (Albufera of València, Eastern Iberian Peninsula) using multitemporal Sentinel-2 images. Sòria-Perpinyà X; Vicente E; Urrego P; Pereira-Sandoval M; Ruíz-Verdú A; Delegido J; Soria JM; Moreno J Sci Total Environ; 2020 Jan; 698():134305. PubMed ID: 31514039 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the possibility for phytoplankton monitoring frequency reduction in the coastal waters of the Community of Valencia, in the scope of the Water Framework Directive. Abramic A; Del Rio JG; Martínez-Alzamora N; Ferrer J Mar Pollut Bull; 2012 Aug; 64(8):1637-47. PubMed ID: 22704148 [TBL] [Abstract][Full Text] [Related]
15. Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data. Dev PJ; Sukenik A; Mishra DR; Ostrovsky I Sci Total Environ; 2022 Jan; 805():150423. PubMed ID: 34818810 [TBL] [Abstract][Full Text] [Related]
16. Remote sensing of cyanobacterial blooms in inland waters: present knowledge and future challenges. Shi K; Zhang Y; Qin B; Zhou B Sci Bull (Beijing); 2019 Oct; 64(20):1540-1556. PubMed ID: 36659563 [TBL] [Abstract][Full Text] [Related]
17. Estimating cyanobacterial bloom transport by coupling remotely sensed imagery and a hydrodynamic model. Wynne TT; Stumpf RP; Tomlinson MC; Schwab DJ; Watabayashi GY; Christensen JD Ecol Appl; 2011 Oct; 21(7):2709-21. PubMed ID: 22073654 [TBL] [Abstract][Full Text] [Related]
18. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Stumpf RP; Davis TW; Wynne TT; Graham JL; Loftin KA; Johengen TH; Gossiaux D; Palladino D; Burtner A Harmful Algae; 2016 Apr; 54():160-173. PubMed ID: 28073474 [TBL] [Abstract][Full Text] [Related]
19. Multispectral remote sensing of harmful algal blooms in Lake Champlain, USA. Isenstein EM; Trescott A; Park MH Water Environ Res; 2014 Dec; 86(12):2271-8. PubMed ID: 25654929 [TBL] [Abstract][Full Text] [Related]
20. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Chaffin JD; Kane DD; Stanislawczyk K; Parker EM Environ Sci Pollut Res Int; 2018 Sep; 25(25):25175-25189. PubMed ID: 29943249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]