BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 21243721)

  • 1. A chemical method for labeling lysine methyltransferase substrates.
    Binda O; Boyce M; Rush JS; Palaniappan KK; Bertozzi CR; Gozani O
    Chembiochem; 2011 Jan; 12(2):330-4. PubMed ID: 21243721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding cofactor repertoire of protein lysine methyltransferase for substrate labeling.
    Islam K; Zheng W; Yu H; Deng H; Luo M
    ACS Chem Biol; 2011 Jul; 6(7):679-84. PubMed ID: 21495674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8.
    Linscott JA; Kapilashrami K; Wang Z; Senevirathne C; Bothwell IR; Blum G; Luo M
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8369-E8378. PubMed ID: 27940912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic properties and kinetic mechanism of human recombinant Lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis.
    Chin HG; Patnaik D; Estève PO; Jacobsen SE; Pradhan S
    Biochemistry; 2006 Mar; 45(10):3272-84. PubMed ID: 16519522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-Differentiated Transition States of SET7/9-Catalyzed Lysine Methylation.
    Chen S; Kapilashrami K; Senevirathne C; Wang Z; Wang J; Linscott JA; Luo M
    J Am Chem Soc; 2019 May; 141(20):8064-8067. PubMed ID: 31034218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clr4 specificity and catalytic activity beyond H3K9 methylation.
    Kusevic D; Kudithipudi S; Iglesias N; Moazed D; Jeltsch A
    Biochimie; 2017 Apr; 135():83-88. PubMed ID: 28143796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational characterization of substrate and product specificities, and functionality of S-adenosylmethionine binding pocket in histone lysine methyltransferases from Arabidopsis, rice and maize.
    Satish M; Nivya MA; Abhishek S; Nakarakanti NK; Shivani D; Vani MV; Rajakumara E
    Proteins; 2018 Jan; 86(1):21-34. PubMed ID: 29024026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Lysine Methyltransferases Inhibitors.
    Li Y; Ding L; Ren S; Zhang W; Rao GW
    Curr Med Chem; 2023; 30(27):3060-3089. PubMed ID: 36043747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific labeling of nucleic acids and proteins with methyltransferases and cofactor analogues.
    Hanz GM; Jung B; Giesbertz A; Juhasz M; Weinhold E
    J Vis Exp; 2014 Nov; (93):e52014. PubMed ID: 25490674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression.
    Wang H; An W; Cao R; Xia L; Erdjument-Bromage H; Chatton B; Tempst P; Roeder RG; Zhang Y
    Mol Cell; 2003 Aug; 12(2):475-87. PubMed ID: 14536086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaches and Guidelines for the Identification of Novel Substrates of Protein Lysine Methyltransferases.
    Kudithipudi S; Jeltsch A
    Cell Chem Biol; 2016 Sep; 23(9):1049-1055. PubMed ID: 27569752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Chemical Tools for the Regulation and Study of Protein Lysine Methyltransferases.
    Hirano T; Mori S; Kagechika H
    Chem Rec; 2018 Dec; 18(12):1745-1759. PubMed ID: 30079624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity analysis of protein lysine methyltransferases using SPOT peptide arrays.
    Kudithipudi S; Kusevic D; Weirich S; Jeltsch A
    J Vis Exp; 2014 Nov; (93):e52203. PubMed ID: 25489813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques.
    Schnee P; Pleiss J; Jeltsch A
    Crit Rev Biochem Mol Biol; 2024; 59(1-2):20-68. PubMed ID: 38449437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced PKMT-substrate recognition through non active-site interactions.
    Kublanovsky M; Aharoni A; Levy D
    Biochem Biophys Res Commun; 2018 Jul; 501(4):1029-1033. PubMed ID: 29778536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet.
    Kwon T; Chang JH; Kwak E; Lee CW; Joachimiak A; Kim YC; Lee J; Cho Y
    EMBO J; 2003 Jan; 22(2):292-303. PubMed ID: 12514135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-L-methionine analogues.
    Wang R; Zheng W; Yu H; Deng H; Luo M
    J Am Chem Soc; 2011 May; 133(20):7648-51. PubMed ID: 21539310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity.
    Guo HB; Guo H
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8797-802. PubMed ID: 17517655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling and Validation of Live-Cell Protein Methylation with Engineered Enzymes and Methionine Analogues.
    Weiss N; Seneviranthe C; Jiang M; Wang K; Luo M
    Curr Protoc; 2021 Aug; 1(8):e213. PubMed ID: 34370893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation.
    Islam K; Chen Y; Wu H; Bothwell IR; Blum GJ; Zeng H; Dong A; Zheng W; Min J; Deng H; Luo M
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16778-83. PubMed ID: 24082136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.