BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2124383)

  • 1. NADPH-dependent reaction of paraquat in mouse brain microsomes.
    Hara S; Endo T; Kuriiwa F; Kano S
    Toxicol Lett; 1990 Dec; 54(2-3):271-7. PubMed ID: 2124383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different effects of paraquat on microsomal lipid peroxidation in mouse brain, lung and liver.
    Hara S; Endo T; Kuriiwa F; Kano S
    Pharmacol Toxicol; 1991 Apr; 68(4):260-5. PubMed ID: 1907736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation by paraquat of microsomal and cytochrome P-450-dependent oxidation of glycerol to formaldehyde.
    Clejan LA; Cederbaum AI
    Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):781-6. PubMed ID: 8240292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between dual NADPH-dependent reactions of paraquat in mouse brain microsomes.
    Hara S; Endo T; Kuriiwa F; Kano S
    Res Commun Chem Pathol Pharmacol; 1991 Jul; 73(1):119-22. PubMed ID: 1882122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paraquat and NADPH-dependent lipid peroxidation in lung microsomes.
    Misra HP; Gorsky LD
    J Biol Chem; 1981 Oct; 256(19):9994-8. PubMed ID: 7275991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of MPTP, MPP+, and paraquat on NADPH-dependent lipid peroxidation in mouse brain and lung microsomes.
    Hara S; Endo T; Kuriiwa F; Kano S
    Biochem Med Metab Biol; 1991 Jun; 45(3):292-7. PubMed ID: 1904747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic interactions between NADPH-cytochrome P-450 reductase, paraquat, and iron in the generation of active oxygen radicals.
    Clejan L; Cederbaum AI
    Biochem Pharmacol; 1989 Jun; 38(11):1779-86. PubMed ID: 2500125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for two ethanol oxidizing pathways in reconstituted mixed-function oxidase systems.
    Winston GW; Cederbaum AI
    Pharmacol Biochem Behav; 1983; 18 Suppl 1():189-94. PubMed ID: 6314373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paraquat-induced free radical reaction in mouse brain microsomes.
    Yang W; Sun AY
    Neurochem Res; 1998 Jan; 23(1):47-53. PubMed ID: 9482266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of paraquat on cytochrome P-450-dependent lipid peroxidation in bovine adrenal cortex mitochondria.
    Klimek J; Schaap AP; Kimura T
    Biochim Biophys Acta; 1983 Jun; 752(1):127-36. PubMed ID: 6849960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents.
    Dicker E; Cederbaum AI
    Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible catabolism of paraquat in mouse brain microsomes.
    Hara S; Endo T; Kuriiwa F; Kano S
    Res Commun Chem Pathol Pharmacol; 1989 Oct; 66(1):159-62. PubMed ID: 2616895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of paraquat-stimulated lipid peroxidation in mouse brain and pulmonary microsomes.
    Hara S; Endo T; Kuriiwa F; Kano S
    J Pharm Pharmacol; 1991 Oct; 43(10):731-3. PubMed ID: 1682451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of paraquat and related bipyridylium compounds to free radical metabolites by rat hepatocytes.
    DeGray JA; Rao DN; Mason RP
    Arch Biochem Biophys; 1991 Aug; 289(1):145-52. PubMed ID: 1654843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the oxidation of hydroxyl radical scavenging agents after alkaline phosphatase treatment of rat liver microsomes.
    Puntarulo S; Cederbaum AI
    Biochim Biophys Acta; 1991 May; 1074(1):12-8. PubMed ID: 1904277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paraquat detoxicative system in the mouse liver postmitochondrial fraction.
    Shimada H; Furuno H; Hirai K; Koyama J; Ariyama J; Simamura E
    Arch Biochem Biophys; 2002 Jun; 402(1):149-57. PubMed ID: 12051692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascorbic acid potentiates the substrate-specific inhibition of mixed-function oxidation and the stimulation of NADPH oxidation caused by paraquat.
    Montgomery MR; Shamblin PB
    J Toxicol Environ Health; 1984; 13(1):69-81. PubMed ID: 6716512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of bipyridylium compounds on microsomal mixed-function oxidation activities.
    Zychlinski L; Raska-Emery P; Montgomery MR
    J Biochem Toxicol; 1988; 3():173-89. PubMed ID: 3199413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a phenobarbital-inducible cytochrome P-450, NADPH-cytochrome P-450 reductase and reconstituted cytochrome P-450 mono-oxygenase system from rat brain. Evidence for constitutive presence in rat and human brain.
    Anandatheerthavarada HK; Boyd MR; Ravindranath V
    Biochem J; 1992 Dec; 288 ( Pt 2)(Pt 2):483-8. PubMed ID: 1463452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.