BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21244092)

  • 1. Five-substrate cocktail as a sensor array for measuring enzyme activity fingerprints of lipases and esterases.
    Maillard N; Babiak P; Syed S; Biswas R; Mandrich L; Manco G; Reymond JL
    Anal Chem; 2011 Feb; 83(4):1437-42. PubMed ID: 21244092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme activity fingerprinting with substrate cocktails.
    Goddard JP; Reymond JL
    J Am Chem Soc; 2004 Sep; 126(36):11116-7. PubMed ID: 15355069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multisubstrate assay for lipases/esterases: assessing acyl chain length selectivity by reverse-phase high-performance liquid chromatography.
    Divakar K; Gautam P
    Anal Biochem; 2014 Mar; 448():38-40. PubMed ID: 24316114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed carbonates as useful substrates for a fluorogenic assay for lipases and esterases.
    Zadlo A; Koszelewski D; Borys F; Ostaszewski R
    Chembiochem; 2015 Mar; 16(4):677-82. PubMed ID: 25648400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zymography Detection of a Bacterial Extracellular Thermoalkaline Esterase/Lipase Activity.
    Tapizquent M; Fernández M; Barreto G; Hernández Z; Contreras LM; Kurz L; Wilkesman J
    Methods Mol Biol; 2017; 1626():295-300. PubMed ID: 28608222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional-Based Screening Methods for Detecting Esterase and Lipase Activity Against Multiple Substrates.
    Reyes-Duarte D; Coscolín C; Martínez-Martínez M; Ferrer M; García-Arellano H
    Methods Mol Biol; 2018; 1835():109-117. PubMed ID: 30109647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme assay and activity fingerprinting of hydrolases with the red-chromogenic adrenaline test.
    Fluxá VS; Wahler D; Reymond JL
    Nat Protoc; 2008; 3(8):1270-7. PubMed ID: 18714295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zymography for Picogram Detection of Lipase and Esterase Activities.
    Ng AMJ; Zhang H; Nguyen GKT
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis activity-based zymography for detection of lipases and esterases.
    Kwon MA; Kim HS; Hahm DH; Song JK
    Biotechnol Lett; 2011 Apr; 33(4):741-6. PubMed ID: 21120585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel fluorescent phosphonic acid esters for discrimination of lipases and esterases.
    Schmidinger H; Birner-Gruenberger R; Riesenhuber G; Saf R; Susani-Etzerodt H; Hermetter A
    Chembiochem; 2005 Oct; 6(10):1776-81. PubMed ID: 16094692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classifying enzymes from selectivity fingerprints.
    Grognux J; Reymond JL
    Chembiochem; 2004 Jun; 5(6):826-31. PubMed ID: 15174166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Microtiter Plate-Based Assay to Screen for Active and Stereoselective Hydrolytic Enzymes in Enzyme Libraries.
    Böttcher D; Zägel P; Schmidt M; Bornscheuer UT
    Methods Mol Biol; 2017; 1539():197-204. PubMed ID: 27900690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Esterases and putative lipases from tropical isolates of Aureobasidium pullulans.
    Kudanga T; Mwenje E; Mandivenga F; Read JS
    J Basic Microbiol; 2007 Apr; 47(2):138-47. PubMed ID: 17440916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-immolative versatile fluorogenic probes for screening of hydrolytic enzyme activity.
    Żądło-Dobrowolska A; Szczygieł M; Koszelewski D; Paprocki D; Ostaszewski R
    Org Biomol Chem; 2016 Sep; 14(38):9146-9150. PubMed ID: 27714153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A red-fluorescent substrate microarray for lipase fingerprinting.
    Grognux J; Reymond JL
    Mol Biosyst; 2006 Oct; 2(10):492-8. PubMed ID: 17216030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pro-antibiotic substrates for the identification of enantioselective hydrolases.
    Hwang BY; Oh JM; Kim J; Kim BG
    Biotechnol Lett; 2006 Aug; 28(15):1181-5. PubMed ID: 16816894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pregastric esterase and other oral lipases--a review.
    Nelson JH; Jensen RG; Pitas RE
    J Dairy Sci; 1977 Mar; 60(3):327-62. PubMed ID: 321489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimedone esters as novel hydrolase substrates and their application in the colorimetric detection of lipase and esterase activity.
    Humphrey CE; Easson MA; Turner NJ
    Chembiochem; 2004 Aug; 5(8):1144-8. PubMed ID: 15300842
    [No Abstract]   [Full Text] [Related]  

  • 19. Techniques to measure lipase and esterase activity in vitro.
    Gilham D; Lehner R
    Methods; 2005 Jun; 36(2):139-47. PubMed ID: 15893936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical profiling in silico--predicting substrate specificities of large enzyme families.
    Tyagi S; Pleiss J
    J Biotechnol; 2006 Jun; 124(1):108-16. PubMed ID: 16519956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.