BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21244356)

  • 1. Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease.
    Silva DF; Esteves AR; Oliveira CR; Cardoso SM
    Curr Alzheimer Res; 2011 Aug; 8(5):563-72. PubMed ID: 21244356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection.
    Quntanilla RA; Tapia-Monsalves C
    Curr Neuropharmacol; 2020; 18(11):1076-1091. PubMed ID: 32448104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Alzheimer's disease mitochondrial cascade hypothesis: an update.
    Swerdlow RH; Khan SM
    Exp Neurol; 2009 Aug; 218(2):308-15. PubMed ID: 19416677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen metabolism abnormality and Alzheimer's disease: An update.
    Liu G; Yang C; Wang X; Chen X; Wang Y; Le W
    Redox Biol; 2023 Dec; 68():102955. PubMed ID: 37956598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria transfer as a potential therapeutic mechanism in Alzheimer's disease-like pathology.
    Mishra M; Raik S; Rattan V; Bhattacharyya S
    Brain Res; 2023 Nov; 1819():148544. PubMed ID: 37619852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A perspective on autophagy and transcription factor EB in Alcohol-Associated Alzheimer's disease.
    Zhang C; Chen H; Rodriguez Y; Ma X; Swerdlow RH; Zhang J; Ding WX
    Biochem Pharmacol; 2023 Jul; 213():115576. PubMed ID: 37127251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caspase-cleaved tau expression induces mitochondrial dysfunction in immortalized cortical neurons: implications for the pathogenesis of Alzheimer disease.
    Quintanilla RA; Matthews-Roberson TA; Dolan PJ; Johnson GV
    J Biol Chem; 2009 Jul; 284(28):18754-66. PubMed ID: 19389700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity.
    Sorrentino V; Romani M; Mouchiroud L; Beck JS; Zhang H; D'Amico D; Moullan N; Potenza F; Schmid AW; Rietsch S; Counts SE; Auwerx J
    Nature; 2017 Dec; 552(7684):187-193. PubMed ID: 29211722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Alzheimer's disease mitochondrial cascade hypothesis.
    Swerdlow RH; Burns JM; Khan SM
    J Alzheimers Dis; 2010; 20 Suppl 2(Suppl 2):S265-79. PubMed ID: 20442494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting autophagy in Alzheimer's disease: Animal models and mechanisms.
    Zhang XW; Zhu XX; Tang DS; Lu JH
    Zool Res; 2023 Nov; 44(6):1132-1145. PubMed ID: 37963840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Insights on Alzheimer's Disease Originating from Yeast Models.
    Seynnaeve D; Vecchio MD; Fruhmann G; Verelst J; Cools M; Beckers J; Mulvihill DP; Winderickx J; Franssens V
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29970827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics.
    Kent SA; Spires-Jones TL; Durrant CS
    Acta Neuropathol; 2020 Oct; 140(4):417-447. PubMed ID: 32728795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative species-induced excitonic transport in tubulin aromatic networks: Potential implications for neurodegenerative disease.
    Kurian P; Obisesan TO; Craddock TJA
    J Photochem Photobiol B; 2017 Oct; 175():109-124. PubMed ID: 28865316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond the amyloid cascade: An update of Alzheimer's disease pathophysiology.
    Gouilly D; Rafiq M; Nogueira L; Salabert AS; Payoux P; Péran P; Pariente J
    Rev Neurol (Paris); 2023 Oct; 179(8):812-830. PubMed ID: 36906457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Traditional Chinese Medicine Natural Products in β-Amyloid Deposition and Tau Protein Hyperphosphorylation in Alzheimer's Disease.
    Yan H; Feng L; Li M
    Drug Des Devel Ther; 2023; 17():3295-3323. PubMed ID: 38024535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrayed CRISPR reveals genetic regulators of tau aggregation, autophagy and mitochondria in Alzheimer's disease model.
    Duan L; Hu M; Tamm JA; Grinberg YY; Shen F; Chai Y; Xi H; Gibilisco L; Ravikumar B; Gautam V; Karran E; Townsend M; Talanian RV
    Sci Rep; 2021 Feb; 11(1):2879. PubMed ID: 33536571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosolic calcium: Judge, jury and executioner of neurodegeneration in Alzheimer's disease and beyond.
    Webber EK; Fivaz M; Stutzmann GE; Griffioen G
    Alzheimers Dement; 2023 Aug; 19(8):3701-3717. PubMed ID: 37132525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconstructing mitochondrial dysfunction in Alzheimer disease.
    García-Escudero V; Martín-Maestro P; Perry G; Avila J
    Oxid Med Cell Longev; 2013; 2013():162152. PubMed ID: 23840916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement Effect of Mitotherapy on the Cognitive Ability of Alzheimer's Disease through NAD
    Yang X; Zhou P; Zhao Z; Li J; Fan Z; Li X; Cui Z; Fu A
    Antioxidants (Basel); 2023 Nov; 12(11):. PubMed ID: 38001859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disease-Modifying Activity of Huperzine A on Alzheimer's Disease: Evidence from Preclinical Studies on Rodent Models.
    Yan YP; Chen JY; Lu JH
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.