BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 21244841)

  • 21. Beta2-microglobulin amyloid fragment organization and morphology and its comparison to Abeta suggests that amyloid aggregation pathways are sequence specific.
    Zheng J; Jang H; Nussinov R
    Biochemistry; 2008 Feb; 47(8):2497-509. PubMed ID: 18215070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical unbinding of abeta peptides from amyloid fibrils.
    Raman EP; Takeda T; Barsegov V; Klimov DK
    J Mol Biol; 2007 Oct; 373(3):785-800. PubMed ID: 17868685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases.
    Kreutzer AG; Nowick JS
    Acc Chem Res; 2018 Mar; 51(3):706-718. PubMed ID: 29508987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of hydrophobic residue requirements for alpha-synuclein fibrillization.
    Waxman EA; Mazzulli JR; Giasson BI
    Biochemistry; 2009 Oct; 48(40):9427-36. PubMed ID: 19722699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.
    Ilie IM; Nayar D; den Otter WK; van der Vegt NFA; Briels WJ
    J Chem Theory Comput; 2018 Jun; 14(6):3298-3310. PubMed ID: 29715424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and dynamics of parallel beta-sheets, hydrophobic core, and loops in Alzheimer's A beta fibrils.
    Buchete NV; Hummer G
    Biophys J; 2007 May; 92(9):3032-9. PubMed ID: 17293399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N-terminal lipid conjugation of amyloid β(1-40) leads to the formation of highly ordered N-terminally extended fibrils.
    Adler J; Scheidt HA; Lemmnitzer K; Krueger M; Huster D
    Phys Chem Chem Phys; 2017 Jan; 19(3):1839-1846. PubMed ID: 28000812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the aggregation mechanism of Aβ(25-40).
    Xiong J; JiJi RD
    Biophys Chem; 2017 Jan; 220():42-48. PubMed ID: 27856006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amyloid β 42 fibril structure based on small-angle scattering.
    Lattanzi V; André I; Gasser U; Dubackic M; Olsson U; Linse S
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34815346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into amyloid oligomers of the Parkinson disease-related protein α-synuclein.
    Gallea JI; Celej MS
    J Biol Chem; 2014 Sep; 289(39):26733-26742. PubMed ID: 25143382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on the inter- and intra-peptide salt-bridge mechanism of Aβ23-28 oligomer interaction with small molecules: QM/MM method.
    Boopathi S; Kolandaivel P
    Mol Biosyst; 2015 Jul; 11(7):2031-41. PubMed ID: 25973904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the β-sheet content on the mechanical properties of aggregates during amyloid fibrillization.
    Ruggeri FS; Adamcik J; Jeong JS; Lashuel HA; Mezzenga R; Dietler G
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2462-6. PubMed ID: 25588987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Molecular mechanism of amyloid formation by Ab peptide: review of own works].
    Selivanova OM; Rogachevsky VV; Syrin AK; Galzitskaya OV
    Biomed Khim; 2018 Jan; 64(1):94-109. PubMed ID: 29460839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR-based site-resolved profiling of β-amyloid misfolding reveals structural transitions from pathologically relevant spherical oligomer to fibril.
    Xiao Y; Matsuda I; Inoue M; Sasahara T; Hoshi M; Ishii Y
    J Biol Chem; 2020 Jan; 295(2):458-467. PubMed ID: 31771980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The intact human acetylcholinesterase C-terminal oligomerization domain is alpha-helical in situ and in isolation, but a shorter fragment forms beta-sheet-rich amyloid fibrils and protofibrillar oligomers.
    Cottingham MG; Voskuil JL; Vaux DJ
    Biochemistry; 2003 Sep; 42(36):10863-73. PubMed ID: 12962511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disordered versus fibril-like amyloid β (25-35) dimers in water: structure and thermodynamics.
    Kittner M; Knecht V
    J Phys Chem B; 2010 Nov; 114(46):15288-95. PubMed ID: 20964446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation.
    Lorenzen N; Nielsen SB; Buell AK; Kaspersen JD; Arosio P; Vad BS; Paslawski W; Christiansen G; Valnickova-Hansen Z; Andreasen M; Enghild JJ; Pedersen JS; Dobson CM; Knowles TP; Otzen DE
    J Am Chem Soc; 2014 Mar; 136(10):3859-68. PubMed ID: 24527756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The importance of steric zipper on the aggregation of the MVGGVV peptide derived from the amyloid beta peptide.
    Chang LK; Zhao JH; Liu HL; Wu JW; Chuang CK; Liu KT; Chen JT; Tsai WB; Ho Y
    J Biomol Struct Dyn; 2010 Aug; 28(1):39-50. PubMed ID: 20476794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational Study on the Assembly of Amyloid β-Peptides in the Hydrophobic Environment.
    Qu L; Fudo S; Matsuzaki K; Hoshino T
    Chem Pharm Bull (Tokyo); 2019; 67(9):959-965. PubMed ID: 31474736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-Amyloid-β Component of Human α-Synuclein Oligomers Induces Formation of New Aβ Oligomers: Insight into the Mechanisms That Link Parkinson's and Alzheimer's Diseases.
    Atsmon-Raz Y; Miller Y
    ACS Chem Neurosci; 2016 Jan; 7(1):46-55. PubMed ID: 26479553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.